
-AR88 828 POSITION SCALE AND ROTATION INVARIANT TARGET
RECOGNITION USING RANGE INAGERY(U) AIR FORCE INST OF

TECH WRIGHT-PATTERSON AFB ON SCHOOL OF ENGI

UNCLASSIFIEID S E TROXEL DEC 87,RFIT/GEO/ENG/87D-3 Fi'G 17/9 M

flfl~n'r.

~H 1.0
Pm

L 336
L.

III-

I_ 'mm,'

III Iif~o

IIIII~ 11111 _________

*i, .- 6 -. 6 5 W~W~ * ~

C
Ivr FITC-FILE Copy

00
0

~OF~ DTIC
____ ____ ____ ____ ____ ____ __ FEB 0 9 M98

* SJL L A a I, £11~LJ.. L A-1 LJ.-'.. 4 111 V LI~i I

TARGET RECOGNITION USING RANGE IMAGERY

THESIS

Steven E. Troxel
First Lieutenant,

USAF
]GR

IAFIT/GEO/ENG/87D-3 o

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

882 406

Wwww no

AFIT/GEO/ENG/87D-3

POSITION, SCALE, AND ROTATION INVARIANT

TARGET RECOGNITION USING RANGE IMAGERY

TRIES IS

Steven E. Troxel D TIC
First Lieutenant, USAF ELECTE'
AFIT/GEO/ENG/87D-3 cI SFEB 09 18

SD

a Approved for public release; distribution unlimited.

AFIT/GEO/ENG/87D-3

POSITION, SCALE, AND ROTATION INVARIANT

TARGET RECOGNITION USING RANGE IMAGERY

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering "- ,

Accesion For

,NTIS CRA&I

Steven E. Troxel, B.S.E.E fjb, iC TA3

First Lieutenant, USAF

'-Y -- ---- --.t
')l ",t: ib !fi ,f' j -

December 1987

Approved for public release; distribution unlimited.

Acknowledgments

There are many individuals who deserve thanks for thier support during this

research project. First, I am deeply indebted to my thesis advisor, Dr. Steven K. Rogers,

for his support and constant encouragement during the entire thesis effort. I also thank

Dr. Rogers for giving enough rope to allow me to perform pure research and yet not

enough rope to hang myself with. There is a very fine line with a time limited project. I

thank Dr. Matthew Kabrisky for making research rewarding. If I told him I noticed that

the sun rose in the east, I'm sure he would praise me for noticing. I would also like to

thank Dr. James P. Mills for his timely suggestions and Dan Zambon for his system level

support in the Information Systems Laboratory. A very special thank you goes to Capt.

Dennis Ruck for all his help with ADA programming, VMS, and TROFF. This project

would have been much harder without him.

Most importantly, I express deep appreciation to my wife, Shelley, and my children,

Shawn and Stacey. The many hours of study time and computer time needed for this

type of project requires a very special and understanding home team to see it through.

I'm thankful that I was given such a team.

Finally, I dedicate this work to the memory of my mother, Dr. Marcia Hamre

Troxel, for giving me the drive and teaching me about dedication to the accomplishment

of a task.

Table of Contents

Page

Acknowledgments ... ii

List of Figures .. v

*List of Tables... vi

Abstract.. vii

1. Introduction.. 1-1

1. 1. Purpose ... 1-1
1.2. Background ... 1-1
1.3. Problem Definition ... 1-3
1.4. Scope of Thesis... 1-3
1.5. Approach and Assumptions ... 1-4
1.6. Overview of Thesis... 1-4

11 I. Segmenting Targets .. 2-1

III. The PSRI Feature Space.. 3-1

3.1. Creation of PSRI Space.. 3-1
3.2. Use of PSRI Space ... 3-6

IV. Classification.. 4-1

4.1. Introduction ... 4-1
4.2. Correlation Peak Analysis... 4-4

*V. Correlation.. 5-1

5. 1. Introduction ... 5-1
5.2. Goodman - Schwarz Correlation.. 5-2

VI. Experimental Results ... 6-1

6. 1. Introduction ... 6-1
6.2. Identification of Scale and Rotation .. 6-1
6.3. Classification.. 6-2

6.3. 1. Experimental Setup ... 6-3
6.3.2. Distance Measurements .. 6-5
6.3.3. Neural Networks.. 6-6
6.3.4. Space Domain Correlation ... 6-7

VII. Conclusions and Recommendations .. 7-1
7. 1. Conclusions ... 7-1
7.2. Recommendations.. 7-2

iii

Appendix A Neural Networks.. A-i

Appendix B Computer Programs ... B-i

0 Bibliography... BI-l

Vita .. VI-I

iv

ICI

List of Figures

Figure Page

3.1 O riginal T em plate ... 3-3

3.2 Magnitude Fourier Transform of Template .. 3-3

3.3 Shifted, Scaled, and Rotated Version of Template ... 3-4

3.4 PSRI Space of Original Template ... 3-4

3.5 PSRI Space of Shifted, Scaled, and Rotated Template 3-5

3.6 Correlation of Previous PSRI Spaces ... 3-5

4.1 Example of an Autocorrelation Peak .. 4-2

4.2 Example of a Crosscorrelation Peak ... 4-3

6.1 Range Image for Goodman - Schwarz Correlation Test 6-8

6.2 Order of Template Subsections ... 6-9

6.3 Range Image for Testing with Partially Occluded Targets 6-10

A. 1 Conceptual Diagram of a Multilayer Perceptron .. A-2

0

OV

0v

List of Tables

* Table Page

6.1 Correlation Peak Location for Template and Same Scale Targets 6-12

6.2 Correlation Peak Location for Template and 1/2 Scaled Rotated Targets 6-12

* 6.3 Correlation Peak Location for Template and 1/4 Scaled Rotated Targets 6-12

6.4 Files for Set 1 E xperim ents ... 6-13
6.

6.5 Training Files for Set 2 Experim ents 6-14

* 6.6 Test Files for Set 2 Experiments 6-15

6.7 Class 1 Training Files for Set 3 Experiments ... 6-16

6.8 Class 2 Training Files for Set 3 Experiments 6-17

6.9 Class 1 Test Files for Set 3 Experim ents .. 6-18

6.11 Class 2 Test Files for Set 3 Exp e DtEe.......................... 6-19

6.11 Classification Results for Set 1 Range Data ... 6-20

6.12 Classification Results for Set 1 Binary Data 6-21

6.13 Classification Results for Set 2 Range Training Data 6-22

6.14 Classification Results for Set 2 Range Test Data 6-23

6.15 Classification Results for Set 2 Binary Trin Data 6-24

6.16 Classification Results for Set 2 Binary Testa Data 6-25

6.17 Classification Results for Class 2 Set 3 Range Training Data 6-26

, 6.18 Classification Results for Class 2 Set 3 Range Training Data 6-27

6.19 Classification Results for Class 2 Set 3 Range Test Data 6-28,. ~ ~~6.20 Classification Results for Class 2 Set 3 Range Test Data 6-29

C 6.21 Classification Results for Class 1 Set 3 Binary Training Data 6-30

6.22 Classification Results for Class 2 Set 3 Binary Training Data 6-31

6.23 Classification Results for Class I Set 3 Binary Test Data 6-32

6.24 Classification Results for Class 2 Set 3 Binary Test Data 6-33

6vi

AFIT/GEO/ENG/87D-3

- Abstract

This thesis explores a new approach to the recognition of tactical targets using a

46 •multifunction laser radar sensor. Targets of interest were tanks, jeeps, and trucks.

Doppler images were segmented and overlaided onto a relative range image. The resul-

- tant shapes were then transformed into a position, scale, and rotation invariant (PSRI)

feature space. The classifiation process used the correlation peak of the template PSRI

space and the target PSRI space as features. Two classification methods were imple-

mented: a classical distance measurement approach and a new biologically-based neural

network multilayer perceptron architecture.

Both methods demonstrated classification rates near 100% with a true rotation

invariance demonstrated up to 20 degrees. Neural networks were shown to have a dis-

- tinct advantage in a robust environment and when a figure of merit criteria was applied.

A space domain correlation was developed using local normalization and multistage

processing to locate and classify targets in high clutter and with partially occluded tar-

* gets.

'i

, vii

,. S , *~4 .. ,

I. Introduction

1.1 Purpose

For the purpose of this research effort, the process of target recognition is a two-

fold process of classifying and locating a target. The classification process answers the

question: "Is there something in the input scene that matches what I'm looking for."

The locating process answers the question of "Where in the input scene is the thing I'm

looking for." The usefulness of target recognition is well documented but a truly auto-

nomous system is still unavailable. The focus of this research effort is in the classifying

area with a small section devoted to the locating process. The classification will be per-

formed in a feature space that is invariant to changes in position, scale, and rotation.

The input data is segmented targets containing gray scale intensity values which relate

information about the relative range or depth changes of the target. These templates now

contain 3-D information about the target which results in more classification informa-

tion. The classification process will also be performed on binary templates to determine

if the method of classification is making use of the added information contained in the

range data.

1.2 Background

A truly useful target recognition algorithm makes few or no assumptions on the

way the target will appear in a given scene.

C " The target may vary in size, shape, orientation, and illumination, or may

even be partially obstructed by other objects. As a result, digital pattern

recognition machines require complex algorithms for managing even a small

i number of the infinite possibilities of target variations, viewing angles and

scene clutter that may be encountered in a typical scene"[l :21.

The current state of target recognition is not able to address all of these variations.

0 However, much work has been done under the restriction of knowing the orientation of

(b 1-1

the target with respect to out-of-plane rotation[1;2;3;4;5;6].

An algorithm which has shown promising results is the AFIT algorithm. The AFIT

algorithm was originally proposed by Israeli Air Force Major Moshe Horev in his thesis,

"Picture Correlation for Automatic Machine Recognition" [4], and later implemented on

a VAX computer by Kobel and Martin Ill]. The AFIT algorithm works on the assump-

tion that we already know that the target is within the input scene. It therefore deter-

mines the scale and rotation of the target in order to correlate and locate the target.

Kobel and Martin fully implemented the ARIT algorithm and tested it using visual

information. Results showed that the algorithm works when the dimensions of the

clutter is not similar to the target [1:771. The algorithm works in the frequency domain

and one of the reported problems that hampered recognition was shadows of the target

and changes in brightness across the target. These shadows and brightness changes pro-

duced dominate spatial frequency terms which caused the scale and rotation values to

differ from the theoretical. This suggests that visual information might not be the best

domain in which to perform the recognition.

Visual data has many problem areas in target recognition. If the environment for

recognition could be strictly controlled, visual data could prove to be adequate. How-

ever, for a recognition system to be robust in different environments (i.e. changes in

sunlight) visual data varies too much to be of use. Different types of data for possible

use include passive infrared or doppler and range data obtained with a laser radar. This

research effort uses laser radar data for processing.

Range data is obtained either using a pulsed laser and computing time-of-flight

between the transmitted and received signal or using a CW modulated beam and

measuring the phase shift. A range image is obtained by using a scanning system to

sweep the beam over the scene [7:206]. Therefore, assuming that the return signal is

digitized into an NxN array of pixels, each pixel will contain information relating to the

relative range of the sector of the input scene covered by that pixel. Now the input

1-2

1'L

scene data is unaffected by changes in ambient illumination or shadow problems and the

frequency domain contains information about how the range is changing within the

scene.

This concept of using the frequency information of range data for target

classification appears to be an overlooked area of research. Grantham did a thesis using

model based range data of tanks and did correlation of these models [8]. Tong did a

thesis using true range data of tanks and trucks in background clutter to segment out

possible targets from a scene [9]. The range data provided information as to where the

relatively flat things with edges were located. Earlier work by Duda and others used

range data to define edges and some planar surfaces with office type scenes [7; 10; 11].

However, no one has used the fact that the changes in range data across a tai-get have

spatial frequency information that is unique for different targets. Thus a possible area

for classification. If this turns out to be a unique idea, full credit for originality must go

to Dr. Steve Rogers [12].

1.3 Problem Definition

The thesis problem was to classify and locate a target within an input scene. This

* process must be accomplished regardless of the target's variation in position, size, and

rotation, and with scenes that contain high clutter (non-random noise).

1.4 Scope of Thesis

This thesis focused on classifying and locating a target within an input scene.

Laser range data was used in an attempt to show that this data contains more informa-

tion than visual data and can therefore lead to better classification. The classification

process was attempted both in and out of the frequency domain with each process

explored to determine if it's the rate of change in the range data that produces the

classification.

1-3

V.1 F

The Executive program written by Kobel and Martin was used for this study [1:V0l

II]. This program was used unmodified to perform the many Fourier transforms and

correlations needed. It was written using the Vax Ada programming language on the

Vax 111780 computer. All the new programs used for classifying and locating were also

written using Vax Ada and written so as to insure compatibility with Executive.

1.5 Approach and Assumptions

The approach was to create segmented targets containing range data and transform

* these targets into a position, scale, and rotation invariant (PSRI) feature space to deter-

mine the proper scale and rotation relationship between template and target. Next, the

proper features to be used for classification must be determined. By definition, the

proper features are any features that can separate the classes of objects that are being

classified. Classification methods both in and out of the frequency domain were to be

attempted. Comparisons were to be made between classification with range data and

0 classification with binary data to determine if the range data was being used and not just

the shape of the object.

The following assumptions were made during the course of this study:

* 1) The multi sensor data was supplied from a number of target scenes. Images were
supplied as a digitized 256 X 256 array of numbers with each number represented
as 8 binary bits. The data included visual, laser radar, and infrared pictures.

2) The out-of-plane rotation of the target was known and templates at this orientation
were available. This restricts us to in - plane recognition.

3) The location, size, and in-plane rotation of the target were unknown prior to pro-
cessing. This requires a position, scale and rotation invariant algorithm.

4) The potential target was presented to the classifier segmented from the input scene.

5) The recognizer as a whole had no prior knowledge about the background informa-
tion of the scene.

1.6 Overview of Thesis

* This thesis is structured in an order which would naturally flow if the proposed

recognition algorithm were to be carried out. The proposed algorithm is as follows:

Jr 1-4

w~~~~rrr~~~~~rr~T TV-r 7Y - Y ~ - '-- ..- .'

First, segment out possible targets from an input scene. This can be accomplished

with either a doppler image, if the target happens to be moving [13], and/or with a range

segmenter as proposed by Tong [9:Ch 3]. This segmented scene is in a binary form and

is then overlayed on a laser range scene to include the range changes in the possible tar-

gets. This is so the rest of the algorithm only has to work with one region and one target

at a time. The segmenting and region selection process are the topics discussed in

chapter 1l.

Second, the target and template are transformed into a position, scale, and rotation

invariant (PSRI) feature space. A correlation is performed between the two feature

spaces which determines the rotation and scale relationship between the two. If neces-

sary and available, a properly scaled and rotated template can now be chosen from a

template bank. The creation of the PSRI feature space and how a correlation determines

the scale and rotation relationship are the subjects of chapter m.

Third, a window around the peak of the target - template PSRI feature space corre-

lation is presented for classification. In this domain, classification is accomplished both

with standard distance measurements and with a trainable neural network. These

methods of classification are the subjects of chapter IV.

Another method of classification is to take a properly scaled and rotated template

back into the space domain and perform a "normalized" correlation between the target

and template. The normalized correlation used was discovered during this thesis effort

and will be from this point called a Goodman - Schwartz correlation. This correlation

and its use in classification are the subjects of chapter V.

Finally, experimental results which compare the use of range imagery to that of

binary data are presented in chapter VI with conclusions and recommendations being

presented in chapter VII.

1-5

IL Segmenting Targets

The targets were presented to the classification part of the algorithm in segmented

form. Segmentation was also needed to create templates to compare the targets to.

When Kobel and Martin tested the AFIT algorithm using visual images, the templates

were made by creating a silhouette of the target from the actual visual picture. The tern-

plate was cut out by hand and made to be black on a white background. If a smaller or

larger template was desired, the silhouette was moved farther or closer to the digitizing

camera and a new image was formed [1]. This approach was not used to create tem-

plates which include range information since the range data was presented with a

numerical range of 256 and the digitizing camera available only had a range of 16 lev-

els. This loss of information was thought to be unsatisfactory for an algorithm that was

attempting to determine the usefulness of range information. A geometric model-based

approach would be a good way to collect the data in a more realistic environment where

different aspect angles would need to be computed. But this approach was well beyond

the scope of this thesis. Some initial testing was performed using targets that were hand

segmented directly from the laser range data. Hand segmentation simply involves set-

ting all the pixel locations that don't belong to the target equal to zero. With a 256 x
U

256 image, this becomes a very tedious process. By the time it became necessary to test

the algorithm using many targets and templates, Dennis Ruck, a fellow AFIT student,

had found a way to produce segmented targets using the doppler information of the laser

radar data [13].

These segmented doppler images were in a binary form with the target pixels hav-

ing a value of one and the background having a value of zero. The segmented doppler

image was then multiplied by the range image to yield a template with range informa-

tion. The "Ruck Doppler Segmenter" became an invaluable tool in this thesis effort.

What follows now is a brief summary of Ruck's Optimum Thesholding method of seg-

menting doppler data along with his region detection routine which was needed for the

2-1

case of multiple targets. For more details refer to Ruck's thesis [(13].

0 Ruck uses an optimum thresholding method described by Gonzalez and Wintz

[14:325-331] which assumes that there are two principal brightness regions in an image.

In a doppler image, one region corresponds to the targets (assuming a radial velocity)

0 ~and the other corresponds to the background. T'herefore, the histogram of the doppler

image will contain two separate clusters, a target cluster and a background cluster. Ruck

shows that assuming the a priori probabilities of the target and background are equal,

0 ~and assuming that the two clusters are indeed separate, "the optimal threshold becomes :

2 t+1 (2.1)

where pt~ and 9b are the means of the target and background distributions, respectively"

[13].

Now its a simple matter to set each pixel with a value greater than the threshold

equal to one and less than the threshold equal to zero. In the above analysis, there is no

guarantee on which side of threshold the actual target pixels will fall. Ruck overcomes

this obstacle by assuming that there should always be more background pixels than tar-

get pixels. Therefore, if the resulting picture contains more ones than zeros, he reversed

the polarity of the segmented image between zero and one [13].

The segmented image now contains all the moving objects within the input scene

in binary form. Its then necessary to determine which areas in the scene are worth

further processing (ie. classification). Ruck identifies these regions by first scanning the

entire segmented image and creating a list of the borders of all the clusters of pixels. If

this border list was less than a threshold set at 50, the region was deemed too small to

bother with. Each of the remaining lists corresponded to possible targets that needed to

be classified [131. The border lists were then separately reconstructed into binary

images which could be multiplied by the complete laser range image to produce the

desired laser range targets and templates.

2-2

Ruck's doppler segmenter was used for the vast majority of the experimentation in

this thesis. However, it does have an obvious drawback with non-moving targets. The

segmenter proposed by Tong uses a combination of laser range and infrared data to seg-

ment out the "man-made" objects out of cluttered backgrounds. Through a process of

gradient operations, mask generation, and conditional neighborhood filtering, Tong was

successful in producing segmented binary images of the desired targets [15]. These seg-

mented targets tend to have a certain amount of "blobness" associated with them but the

robustness of the process makes these targets worth an attempt at classification.

A detailed analysis showing the usefulness of classifying with Ruck - segmented

targets versus Tong - segmented targets was not accomplished. Some Tong - segmented

targets were simply thrown into the classification pot and checked to see if problems

resulted. If both types of templates could be classified then each method was deemed

useful.

Once a template and possible target was identified, the next step was to transform

each into the PSRI feature space. This transformation was necessary whether the

classification was to be performed on the correlation peak or with the actual target in the

space domain. The next chapter covers the PSRI feature space.

40

2-3

IM. The PSRI Feature Space

3.1 Creation of PSRI Space

Since the segmented target could be presented to the classifier with any position,

scale or rotation characteristics, a space which is invariant to these changes is needed.

Much work has been done with the F(ln r,O) position, scale, and rotation invariant

(PSRI) feature space by Casasent [31 and locally by Mayo, Horev, Kobel and Martin

[1,4,16]. In this case, a PSRI feature space is not one who's features are totally invariant

to position, scale and rotation but rather one who's features behave in a very predictable

manner with respect to position, scale and rotation.

The position invariance is the only true invariant part of this feature space and is

accomplished by taking the magnitude of the Fourier transform of the input scene. The

position invariance of this transformation is indicated by the Fourier transform "shift"

theorem:

If F (i(x,y)) =I(f.,fy) then

F (i (x - a.y -) = Il(fx,fy)e [- j 2X(af . + Of,)] (3.1)

where i(x - a,y - 1) = input image shifted by a units in the x direction

and by 3 units in the y direction0
F{) = Two dimensional Fourier transform.

Therefore, shifts in the input scene will only affect the phase portion of the Fourier

transform and will have no affect on the magnitude portion. This is very nice for mak-

ing the space shift invariant, but, it runs a great risk if this space is now used for

classification. By throwing away the phase, we assume that information in the magni-

tude of the Fourier Transform is enough for classification [17].

Rotation 'invariance' is accomplished by first realizing that rotations within the

input scene result in exact equal rotations in the magnitude Fourier transform plane. If

the magnitude Fourier transform plane is mapped into polar coordinates, rotations in the

input plane will result in linear shifts along the angle axis. The new spatial frequency

3-1

coordinates are given by:

f o = tar[5f.] (3.2)

and

fr= (-2+f)1/2 (3.3)

Kobel and Martin used only half of the magnitude Fourier transfom for conversion to

the polar coordinates since the magnitude spectrum has even symmetry [1:17-18].

The scale 'invariance' makes use of the following Fourier transform property:

Fji(~-. (XP) I c3 I (afx , IPf) (3.4)

This property is simplified by realizing that there are not different shaped targets only

the appearance of different sized targets due to how far the target is away. This type of

scaling will be equal in the x and y direction and therefore (x = P . Since the angular

axis (fe) was created from the ratio of the y-direction frequencies to that of the x- direc-

Stion frequencies, it is not affected by uniform scaling.

The radial frequency coordinate of the scaled polar magnitude spectrum is now:

fr = a2 (f 2 +f.)]P/2 (3.5)

Taking the natural log of both the scaled and the unscaled radial frequency coordinate

results in

In(fr)= In(+f) (3.6)

4' 2
and

IC or

In (j;) - In (f,) = In (c) (3.8)

Therefore, if the radial axis is logarithmically scaled, uniform scaling of the input will

result in a linear shift along the In fr axis. Smaller targets will shift in the positive direc-

tion and larger targets will shift in the negative direction. The properties of the PSRI

- 3-2

feature space are shown in figures 3.1 - 3.5.

Fig 3.1
Original Template

F y

o-

,.

A-

: Fig 3.2
Maniud Forieira Tasooemplate

- ..

-

AS Fig 3.2
Magnitude Fourier Transform of Template

&, (Note: Magnitude Fourier Transform is nvariant to Shifts)

¢ 3-3

Fig 3.3
Shifted, Scaled, and Rotated Version of Template

1nr

tlbe

Fig 3.4
PSRI Space of Original Template

3-4

[nr

W

Fig 3.5
PSRI Space of Shifted, Scaled, and Rotated Template
(Note: Three operations are independent and cause a

measureable shift in the PSRI space.)

GIx

Fig 3.6
Correlation of Previous PSRI Spaces

(Note: Correlation peak indicates amount of shift
and therefore scale and rotation.)

4a 3-5

There are a few subtle points about this feature space that need to be pointed out.

First, invariance in rotation translates to linear shifts along the fo axis. This axis is

periodic so shifts off the right end wrap around to the beginning of the left end. Second,

invariance in scale translates to linear shifts along the In f, axis. This axis is not

periodic. The In fr axis can be thought of as extending to infinity in both directions

above and below the region chosen to be analyzed. A linear shift then means to shift

this chosen region. Smaller targets causing a positive shift means that new information

is pushed in from the bottom and information is lost off the top. This can cause prob-

lerns in classification for large scale changes depending on how closely related the

classes are to one another.

3.2 Use of PSRI Space

One of the best uses of this PSRI feature space is in determining how much a tem-

plate is scaled and rotated with respect to the target. Rotations are represented by linear

shifts along the fe axis and scale change- are represented by linear shifts along the In f,

axis. Therefore, a correlation between the target and the template PSRI spaces will tell

how much scale and rotation difference there is. The correlation plane will contain a

* peak value at a location representative of how much the template PSRI space had to

shift to match the target PSRI space. If the target and template are the same scale and

rotation, a peak at location (0,0) in the correlation plane will result. The results section

of this thesis contains data which shows that shifts along the fe axis occur at a rate of

2.8 pixels/degree rotation and along the In f, axis at a rate of 30 pixels for a scale

change of 2:1 (See Fig 3.6). Once the scale and rotation changes are known, a properly

scaled and rotated template could be chosen from a template bank for further process-

ing. The results section also shows how critical a properly scaled and rotated template

is for classifying and locating a target. As stated in chapter I, one proposed method of

Cclassification was to analyze the peak of a template - target PSRI feature space correla-

tion. The theory of the PSRI feature space leads to a hope that differently scaled and

3-6
C..

rotated objects should correlate, in the PSRI feature space, to very similar peaks. Again,

this is due to the fact that, in theory, the only change in the PSRI spaces has been linear

shifts. If a method of grouping similar things together and then measuring the level of

'togetherness" could be found, classification would result. Classification is the subject of

the next chapter.

-

f.

'3-,
°

-

r,%*1

IV. Classification

4.1 Introduction

The theory of the PSRI feature space states that targets that are scaled and rotated

with respect to one another should be virtually identical (except for linear shifts) in the

PSRI space. Therefore, if the PSRI space of a template is correlated with a PSRI space

of a scaled and rotated target, the "shape" of the correlation should be similar to the

shape of an autocorrelation of the template PSRI. If a way to determine and measure

these similarities could be found, then classification could be accomplished. This was

the logic that was followed in the pursuit of classification.

The correlation used for all the PSRI feature spaces was the linear modified phase

correlation as discussed in Kobel and Martin [1:37-39]. In this correlation, the magni-

tude of the templates Fourier transform is set to one during the correlation and has the

effect of edge enhancing the PSRI space of the template. This effect can be thought of

as a very specialized high-pass filter being applied to the magnitude transform. All

Fourier transforms of real objects have large low frequency magnitudes relative to the

high frequency magnitudes and the high frequency magnitudes always approach zero as

the frequencies become very large. Therefore, setting all the magnitudes equ.1 to one

has the effect of attenuating the low frequencies relative to the high frequencies, thus a

high-pass filter. Now, since the PSRI space of the template is edge enhanced, the corre-

lation plane will contain a peak where the shape of the template PSRI space best
matches the shape of the target PSRI space. This last statement is not generalized to all

modified phase correlations but works in this case since the PSRI space is based on a

magnitude Fourier transform. The energy in the PSRI space peaks and falls off nicely

* ' from these peaks without spurious high energy pockets. Without a normalization

4 scheme, this correlation could not be expected to produce as good results with a clut-

tered space domain correlation. After the complete correlation %v:- performed, the peak

was found with a simple maximum value search routine and t,, location of the peak

4-1

very accurately defined the scale and rotation of the target with respect to the template.

The peak in the correlation plane was chosen as the starting point for feature extraction.

* Tallman showed that the lower three harmonics of the Fourier transform are

enough to adequately discriminate handwritten letters of the alphabet [18). These lower

three harmonics, along with the DC component, result in a 7 by 7 array of numbers.

, E,,en though it's an enormous jump between defining an object in the low frequency

Fourier transform space to defining an object based on some peak in the correlation

plane of the PSRI spaces, this 7x7 array around the peak was the initial features for

* attempted recognition. Examples of these peaks are shown in figures 4.1 and 4.2.

1.0

. oo'
/ 0.8

A 0.6

0.2

t23. 123,

i~~ 2S 6.
X Y129, . 129.

Ifig 4.1 Example of an Autocorrelation Peak
(Note: This smooth fall off is present in

all the autocorrelation peaks.)

It seems appropriate at this point to momentarily digress to some general thoughts

on target recognition. No ideal, all purpose features have ever been found that can

always classify any target. It is reasonable to assume that such features may never be

found and very well may not exist. However, many types of features have been found

4-2

'S- - 'f J.'Cb'

"9 0.9

0.8

* 1 3, .3

1126.
"-129. 129. Y

Fig 4.2 Example of a Crosscorrelation Peak

(Note: All crosscorrelation peaks lack the smooth fall off.)

and used sucessfully for recognition given a set of resuictions on such things as size,

rotation, aspect angle, noise and illumination. Even human beings, which possess a

remarkable recognition system, have restrictiogs such as distance and illumination.

* There is an almost endless supply of features that can be extracted from an object.

The only limitations seem to be the limitation of the imagination. However, by

definition, good features are ones that result in recognition and better features are ones

that result in a smaller set of restrictions. With any given set of features there is really

no way of knowing if they are a good set without testing them. Even a good set of

features might be rejected because the proper form of testing can't be found. There is

C - much trial and error involved in the art/science of pattern recognition and any pursuit of

recognition is destined to result in many more failures than successes. Therefore, the

reason for choosing a 7x7 window around the correlation peak of the PSRI feature

.Gspaces for classification was based on a mixture of scientific reasoning, from the theory

of the PSRI feature space, and the fact that it "felt" like it should work, since Tallman

I' ,4-3

did similar work with letters.

4.2 Correlation Peak Analysis

The testing method was to compare the window with an autocorrelation window.

The autocorrelation window was a 7x7 window around the peak of the autocorrelation

of a template PSRI feature space. The comparison was done by first normalizing each

window by dividing each point by the square root of the sum of the squares of all the

points in the window. The 7x7 array of numbers can now be thought of as a 49 dimen-

sional vector with a length of 1. Each vector, from every correlation, now specifies a

point on the surface of a 49 dimensional hypersphere. If the point representing the auto-

correlation represents an exact match between the template and the target, then even

though the target may be rotated and scaled differently, the correlation peak should look

similar to an autocorrelation and be located very close to the true autocorrelation peak

on the 49 space hypersphere. Of coarse, "very close" is an extremely relative term. The

49 _

distance between the two, if measured as D = (.(xI, -x2) 2) 2 , need only be closer

than any cross correlations in order to be separable.

For example, if a target, T, has the possibility of being one of 3 classes A, B, or C,

* then three PSRI feature space correlations are performed, (T'A, T*B, T*C). The dis-

tances in 49 space between each of the correlation peaks and the corresponding auto-

correlation peaks are calculated, (T*A - A*A, T*B - B'B, T*C - C*C). The smallest

* ~ distancc will then correspond to the correct match. In this thesis experiment, there are

only 2 classes, autocorrelations or crosscorrelations. Without placing too many restric-

tions on the algorithm, it was hoped that the autocorrelation peaks would cluster

,* . together and that the crosscorrelations could be located anywhere outside this cluster.

Therefore, it was only necessary to measure the distance between the correlation and a

single reference autocorrelation. A threshold value could then be set to determine if the

6 correlation was within the autocorrelation region. This assumes that the correlation

4-4

points on the 49 space hypersphere are clustered into neatly packed regions and that any

wrongly matched correlation will be located farther away from the true autocorrelation

V than all desired properly matched correlations. However, its not guaranteed that the

clustering will be so neat.

It is possible for regions to be clustered into arbitrary shapes where distances

within a region are not smaller than region to region distances, strips for example. In

this case, it's necessary to either find another testing method besides distances or per-

form some type of processing on the features which will spread the regions farther apart.

Another testing method is found in the newly rediscovered field of neural networks.

Appendix A explains more about neural nets, but the general theory of the mul-

ti tilayer perceptron neural net is that given a set of data to train with, the net will formu-

late the boundaries around the regions. Once the training is accomplished, test data is

supplied and the net will indicate which region it falls in. The region identification

results in classification. Identification is via a numeric value of the output of the network

where a value of greater than an upper threshold indicates a true and a value less than a

lower threshold indicates a false. The upper threshold is usually taken to be 0.9 and the

lower threshold taken to be 0. 1. This separation between a true and a false value results

in a very good figure of merit criteria. The figure of merit gives that warm fuzzy about

how much the classification decision can be trusted [19]. Both distance measurements

and neural nets were used as tests with results shown in chapter VI.

Another method of classification worked with in this thesis was performing a nor-

malized correlation within the space domain. This method requires determining the

proper scale and rotation for the template and then correlating the template with the seg-

mented target in the space domain. The classification can now be accomplished on the

magnitude of the correlation peak. As shown in chapter V, the correlation peak will be

maximum when an exact point for point numerical match occurs between the target and

template. Since the range information is periodic, the absolute numeric values of the

4-5

WW'OE

target can't be predicted. Two preprocessing methods were used in an attempt to make

the target and the template have the same absolute values. Method 1 involves taking the

* gradient of both the target and the template before correlating. The gradient operation

ignores the absolute values and assigns new values based on the numerical change

between points. This has a nice "flavor" to it as it emphasizes the fact that the changes

* in the range data are unique for a given target. The second method is to simply add a

value to each point in the template that makes the target and the template have the same

average value. This is accomplished by finding the average of the points in the target

and in the template and then adding the difference of the averages to each point in the

template. Both methods were tried and the results are shown in chapter VI. The details

of this space domain correlation are discussed in the next chapter.
C

4-6

4I III,

V. Correlation

5.1 Introduction

Most pattern recognition algorithms use some form of correlation as the method of

finally locating the target. Basic correlation involves shifting the template to all possi-

ble locations within the input scene and sumnming the product of all corresponding

points. A basic correlation works very well for a scene in which the target energy is

much greater than the background noise, where all possible targets have equal energy,

0 and where the shape, size, and orientation of the target is very accurately known. Since

very few of these type scenes exist, the basic unmodified correlation is very rarely used

[19].

The main problem with using an unmodified correlation on most real scenes is that

many times there is more energy in the noisy background than in the target. Therefore,

the correlation peak due to the target wil be much lower than the correlation peaks

associated with the background. Hence, it has only limited applicability. Ideally, it's

desired to have the largest peak in the correlation plane identify the location of the tar-

get. Kobel and Martin partially overcame this problem when correlating feature spaces

by using a modified phase correlation [1:38].

Basically, the modified phase correlation involved correlating the template with an

edge enhanced version of the input scene. This correlation was used for all the correla-

tions of the PSRI feature spaces, and it works well when looking for a pattern in a scene

that doesn't contain a great deal of rapidly changing noise. Two problems make this

unsuitable for correlation with range data. First, most laser range data contains a great

deal of rapidly changing noise in such things as trees and bushes. Second, since the

range data is periodic from 0 to 256, the jump from 256 back to 0 will contain a large

amount of energy when edge enhanced.

Another type of correlation suggested by Kobel and Martin was to first rectify the

image by making the magnitude of it's Fourier transform equal to the magnitude of the

U 5-1

* rr-r- T~r M

templates Fourier transform. This process enhances the frequencies associated with the

template and attenuates the noise. A problem found with this type of correlation is that

40 the frequency associated with the range gates (the spacing between the range jumps) can

be very close to the dominant frequencies of the template. Therefore, when the frequen-

cies of the template are enhanced, a large amount of energy is put into these gates. This

0 results in correlation peaks at the areas of "correctly" spaced range gates and not at the

target. These problems are not intended to state that these correlation methods will

never work on range data, just to show some of the problems that need to be overcome.

0 For someone more adept at computer programing and graphics, it may be a relatively

simple task to rid the input scene of the range jumps. Also, for the newer AM/FM laser

radars, where the absolute range will be available, the problem will not exist.

5.2 Goodman -Schwarz Correlation

When using a correlation for direct target classification of a segmented target as

proposed in chapter IV, it becomes necessary to have an expectation of the correlation

peak. A correlation method that was found to produce very desirable results is what will

be referred to as a Goodman - Schwarz correlation. Although a reference for the use of

this correlation was not found, the method is a simple extension of a character - recogni-

tion system discussed by Goodman [20:179-181] and is sure to have been used before.

0~ The Goodman - Schwarz correlation is accomplished entirely in the space domain using

as a starting point the brute force definition of correlation. The equation for a space

domain, discrete, brute force correlation is as follows:

N-1M-1
Ry () J_ Y, ~x(n, m) y(n +(, m P) (5.1)

This equation says that every point in the correlation plane is a result of the sum of a

point by point multiplication of the image with a shifted template where the shift

corresponds to the location of the point in the correlation plane. Again this basic corre-

lation does very little for locating or classifying except for very simplified, highly

5-2
G .

restrictive cases.

The main modification to this correlation is the energy normalization of the input

data. Most energy normalization schemes, including the character - recognition system

discussed by Goodman, are involved with image and templates of the same array dimen-

sions and/or with the restriction of one object in the input scene, usually with relatively

minor amounts of noise. With a smaller template array and an image filled with a large

amount of noise and several possible targets, it becomes necessary to do a more local-

ized normalization. The character - recognition system in Goodman takes an input

image (a character) and compares it, basically using a correlation, with a series of tem-

plates. The correlation is then normalized by the division of the square root of the sum

of the squares of all the points in the template (the energy of the template). Goodman

shows a proof using the Schwarz inequality which states that the peak magnitude

squared of this correlation is an absolute maximum when the template and the image

numerically match. Numerically is stressed to emphasize that its the numbers that are

needed to match and not just the shapes. Also, when the template and the image exactly

match, the magnitude squared of the correlation peak will be equal to the sum of the

squares of the template (the square of the energy). This fact gives us the expected value

40 needed for classification.

It's a simple modification of the character - recognition system to reverse the

image and template roles. Now there is one template, several inputs, and normalization

is by the input energy. The shifting method in the Goodman-Schwarz, correlation is the

same as the brute force correlation except at each shift in the correlation, the pant of the

image corresponding to the location of the shifted template is considered to be the input

to the modified character - recognition system. The output of the modified character -

recognition system becomes the value of that shift point in the Goodmran-Schwarz corre-

lation plane. A simple peak search of the correlation plane will identify the location

6 where the image best matched the template. If the peak value is equal to the square of

5-3

the energy, that location contains an exact match of the template. Also, its possible to

determine a threshold, related to the theoretical peak value, that will result in acceptable

classification.

This method would have a hard time with a small binary square template attempt-

ing to locate another small binary square in a scene that also contains large binary

squares. Since the normalization only uses the energy of the image that corresponds to

the location of the shifted template, all the locations in the correlation plane representing

the large squares will also contain the proper maximum peak value which would indi-

cate an exact match. However, with the use of the range data, the process was found to

work very well for locating and classifying a target when the template was taken

directly from the input scene (ie. same scale, rotation, aspect angle and relative range

values). Also, as stated in chapter IV, the gradient operation or an average equalization

can be used to allow for differences in the absolute value of the range information. In

this manner, the locating and classifying was accomplished in a single step. In addition,

this method has the possibility of working with partially occluded targets. The template

could be broken into a number of sectors with each sector now being run through the

correlation process as a separate template. The final classification would be based on

the number of adjoining sectors that reached threshold, five out of nine for example. A

closer examination of this process also shows that a completely parallel architecture is

possible. Experimental results of all the classification methods are presented in the next

chapter.

ec 5-4

VL Experimental Results

6.1 Introduction

This section will show and discuss the results of the various experiments conducted

during this thesis effort. First will be the verification of the use of a PSRI space correla-

1P tion to identify the scale and rotation of a target with respect to a given template using

laser range data. This is a "get your feet wet" experiment since it uses the parts of Kobel

and Martin's Executive program that will be needed for the remaining experiments.

Kobel and Martin already demonstrated that this process works well with visual data

11:66-671 and it was necessary to insure that range data would also work. Next will be

the classification experiment. This portion consists of three separate experiments with

each portion comparing the use of range data to that of binary data for classification.

The three experiments include a standard distance measurement and a neural network

with data obtained from a PSRI space correlation, and a space domain Goodman -

OP Schwarz correlation with actual space domain input data.

6.2 Identification of Scale and Rotation

This experiment was set up to verify the use of a PSRI space correlation to identify

how much a target is rotated and scaled with respect to a template. The setup was to
.e take a template and rotate it from 0 to 45 degrees in increments of 5 degrees and at each

rotation, perform the PSRI space correlation with the original template. A peak search

was then performed on the correlation plane with the peak location and value being

recorded for analysis. The process was then repeated for a template that had first been

scaled by 1/2 and then again with a 1/4 original sized template. This experiment also

demonstrated which type of correlation would work best and yield the clearest correla-

tion peaks. The Executive program contains several parameters that can be changed

interactively. The modified phase or "Lin I correlation flag" option was determined to

G yield the best results.

The Executive program contains a peak search routine which looks for maximum

A'i

,W6-

vertical strips that are 35 pixels wide and then looks for the maximum value within this

maximum strip [1: 104- 1051. This process might be necessary when analyzing complete

input scenes, but with using a segmented target and segmented template, a more

simplified maximum value search routine gave identical results and required much less

processing time. Also, because of the 35 pixel window that the Executive peak search

routine uses, and the fact that small rotations cause only small shifts, a rotation of less

than 6 degrees will cause the program to abort. A simple modification of the program

4 that would include a wrap around of the data for small shifts would cure this problem.

The Executive program for rotating an image was very useful in creating the

rotated templates. A good method of arbitrarily scaling a template containing range

data was not found. A more detailed study is needed on how detectors collect the data

and therefore, how a smaller or larger target physically changes the values of each indi-

vidual detector. There should be a good mathematical approach that would come out of

such a study. For this experiment, scaling by 1/2 and 1/4 was accomplished by simply

sampling every other pixel for 1/2 scaling and then every other pixel again for 1/4 scal-

ing. Tables 6.1, 6.2, and 6.3 show the results of this experiment.

This data shows that the location of the peak in the PSRI space correlation plane is

a very good way to determine the scale and rotation of a target with respect to a given

template. The data also indicates that rotations and scale differences can be calculated

using approximate conversions of 2.8 pixels per degree rotation and 30 pixels per 2:1

scale change. Also, a true autocorrelation will yield a peak at the 0,0 location which is

the lower left corner of the correlation plane. A smaller target causes the peak to shift

up and rotations in the counterclockwise direction cause the peak to shift to the right.

6.3 Classification

The classification experiment was a set of several experiments. This section

discusses the setup for each experiment, presents the results, and analyzes some of the

results.

6-2

6.3.1 Experimental Setup

,0 This experiment was broken into three main sections. There was classification

using distance measurements, classification using a neural network, and claosification

using the space domain Goodman - Schwarz correlation. The classification experiments

that use distance measurements and the neural network use data obtained from a 7x7

*, array around the peak of a PSRI space correlation. Both experiments were conducted on

six sets of input data with three sets created from laser range templates and three sets

created from binary templates. The three sets of files are shown in tables 6.4, 6.5, and

6.6. Each name specifies a file that contains the data of the PSRI correlation peak. The

first part of the name specifies the target. The middle section indicates the rotation, if

any, of the target and whether the data is range data (tmp) or binary data (btmp). The

last section of the name specifies the template used. For example,

R3083rIOtmp_3195.dat indicates that this is the range data correlation peak file

created using for a target, R3083 (a side view of a tank) that had been rotated by 10

degrees (rlO) and for a template r3195 (a side view of a tanker truck). Set one was

setup to demonstrate the classification between true autocorrelations and crosscorrela-

tions. The true autocorrelations were of identical targets and templates. This set was

used to demonstrate a "best case" scenario, and determine if there was any point in trav-

eling farther down the chosen road. If the experiments could not classify this data, there

could be no hope of classifying in a more robust situation. Set two was setup to demon-

strate the classification between rotation autocorrelations and crosscorrelations. Auto-

correlations were to include a number of rotated versions of the target with a fixed tem-

plate. Set three was setup to test the complete robustness of the classification process.

The theory was that with respect to the correlation peak, a truck is a truck i, truck and

a tank is a tank is a tank. Therefore, same type objects that are at similar, I, not neces-

sarily equal, aspect angles, rotations, and scales should be able to be separmied from one

another. Finally, as stated above, a comparison was made between the u,,c of range data

6-3

****~% j**%

and the use of binary input data for classification.

0 The underlying goal of this thesis was to determine if range data contained an

added level of information that could be useful in classification. Therefore, the exact

same classification experiments were to be conducted on the laser range templates and

40 the binary templates. However, a fundamental error was made on the first pass through

this experimenit. The Executive program that creates the PSRI space of the targets and

templates contains a variable that allows the user to set the range of frequencies that get

0 mapped into the PSRI space. Laser range data changes value from point to point which

requires high frequency components. Also, lower frequency components are useful in

determining the overall shape of an object, such as width versus height. Therefore, the

decision was made to map the whole range of frequencies from 1 to 128 into the PSRI

space. When the binary templates were first transformed, the range of mar ned frequen-

cies were left at the default values built into Executive, 5 to 70. With the resulting set of

experimental data, no meaningful conclusions could be drawn between using laser range

input and using binary input since it could not be determined whether the differences

were due to the actual change in input data or the change in frequency mapping. The

templates were therefore retransformed using the same I to 128 frequency mapping.

The final experiment in classification uses the space domain Goodman - Schwarz

correlation. This experiment was performed on a much smaller set of data since the

correlation by itself offers no real hope of being robust in rotation or scale. It must be

assumed that the aspect angle of the target is known and can be matched. It is also

assumed that the PSRI space correlation identified the rotation and scale and that a prop-

erly rotated and scaled template is available. The space domain correlation was per-

formed on a complete unsegmented laser range scene to demonstrate the robustness with

respect to clutter. Therefore, a comparison between the use of range data and binary

data was not made. Also, tests were made using the Goodman - Schwarz correlation to

locate partially occluded targets.

6-4

6.3.2 Distance Measurements

The distance measurement used in this experiment was a standard euclidean dis-*

tance on the normalized input data. This euclidean distance was measured as

49 _

D = (y(Xl,-X2,) 2) 2 where the individual points are already normalized by the square
i=1

root of the sum of the squares of the input. The next question was what to use as a refer-

ence point to measure the distances from. The work with neural networks had given a

good feel for the usefulness in training a classifier. For a distance measurement, the

training involved reading in a number of autocorrelation examples and determining an

average location for these points. This average point was then used as a reference for

which all the distances in the set were measured. There was no a priori knowledge

about the distance values and the hope was that there would be a distinct difference

between the distances of the autocorrelation peaks and that of the crosscorrelation

peaks. A histogram plot of the distance measurements obtained from the training data

was used to determine a threshold value for classifying the test data. Tables 6.11 - 6.24

show the results of this experiment.

These results indicate that the normalized PSRI space correlation peaks of true

autocorrelations (set 1) cluster very well together. Distance measurements allow for set-

ting a threshold that can classify data with an accuracy rate near 100%, only one miss

from either the range or the binary data. The results of set 2 indicates that rotations of

the target with respect to the template produce little movement of the points on the 49

space hypersphere. With rotations between 0 and 40 degrees, classification of near

100% was achieved. However, when the "a tank is a tank is a tank" approach was tested

(set 3), the grouping clusters are dispersed into regions that make a distance measure-

ment virtually useless. The numbers will indicate o classification accuracy of about

65%, depending on the threshold chosen, but this is only slightly better than strictly

guessing. Also, since the data is distributed very close around the threshold value,

6-5
C

assigning any type of figure-of-merit criteria would yield even worse results.

A comparison of the binary data results to that of the range results gives no indica-V
tion that one type of data is better than the other for this type of classification. This does

not imply that the range data does not contain useful information, it simply means that

the testing method of distance measurements between PSRI space correlation peaks

does not make use of the information that is available.

6.3.3 Neural Networks

The neural network used in this experiment was the multilayer perceptron dis-

cussed in appendix A. As discussed in appendix A, a multilayer perceptron creates

decision regions from a set of training files and then classifies test data from these deci-

C sion regions. The experiment using distance measurements showed that the autocorrela-

tions in sets one and two were "reasonably" clustered together and distinctly separable

from the cross correlations. These sets, therefore, provided a good testing ground to

determine if the net was operating properly. For all the tests, the number of nodes forV
each hidden layer in the network were chosen as suggested in appendix A. All initial

values for the weights and thresholds were chosen from a uniform random distribution

centered at 0 with a radius of 0.5. All tests were run with an eta gain term equal to 0.25

and an alpha momentum term equal to 0.70. The results of the neural network

classification are shown in Tables 6.11 - 6.24.

, - The results for set I data were obtained with a total of 1000 training file iterations.

The range data was able to be trained with 50 first hidden layer nodes and 2 second hid-

den layer nodes while the binary data required 100 first hidden layer nodes and 2 second

hidden layer nodes. Both the binary and range data results showed near perfect

classification, depending on the threshold chosen. The immediate advantage seen of a

neural network to that of a distance measurement for classification is in the figure-of-

merit. A properly trained neural network tends to make strong decisions one way or the

other.

6-6

The results for set 2 data were obtained with a total of 2000 training file iterations.

Both types of data were able to be trained with 150 first hidden layer nodes and 4 second
S

hidden layer nodes. Again, classification accuracy of approximately 95% resulted.

The results for set 3 data were obtained with a total of 45,000 training file itera-

tions. The results changed very little after about 25,000 training file iterations but the

net was allowed to run in the attempt of completely classifying the training data. This

goal was not reached. With both the range data and the binary data, the network was

trained with 200 first hidden layer nodes and 5 second hidden layer nodes. Note that the

same two files in both the range data and the binary data case were unable to be trained.

This may be an indication that with the chosen features and the method of classification,

much of the dominating information is the same between range and binary data. The

overall classification accuracy rate with either type of data was at 85% but when only

the test data was considered, this rate drops to just below 80%. These results are very

, promising in that they are much better than the standard distance measurements and

with a far greater figure of merit able to be assigned. The classification rate of just the

same class, different image, test correlations were poor. However, with the very good

classification obtained in the training data, it seems reasonable to assume that better

results would be obtained with a larger data base to train with. One of the training files

that was not able to be trained was a Tong segmented tanker truck that was about half

the size of the Ruck segmented template. There are, of coarse, going to be limitations

on the amount of variance in rotation and size. More study needs to be done to deter-

mine exactly what these limitations are. Also, it may be important to keep as much

similarity as possible between the template and target so Tong data may work better
-

when correlated with other Tong data.

6.3.4 Space Domain Correlation

The final experiment conducted in this thesis was an attempt at locating and classi-

fying a target using the Goodman-Schwarz space domain correlation as discussed in

(6-7

chapter V. This was a relatively simple experiment that was set up to demonstrate the

theory and determine the usefulness in a cluttered environment. First, a range image was

created that contained multiple targets. The targets within the image had to be ones for

which good templates were available. Such an image was not available so templates

were overlaid onto a range image. The final range image contained 3 targets, 3033 (a

side tank), 3028 (a front tank), and 3190_p165 (a side tanker). The range image is

shown in fig 6. 1. A value of 25 was then added to each pixel in each of the templates so

as to insure different absolute values. Some care had to be taken to insure that neither

the targets or templates contained range jumps. Range jumps cause large values when

the gradient operation is performed and therefore cause havoc in the correlation.

Fig 6.1

Range Image for Goodman - Schwarz Correlation Test

The first addition to the previously described Goodman - Schwarz correlation was

to break the template into 9 sections and correlate with each section, one at a time. The

original reason for doing this was to save on computation time. A subsequent section

would only be applied if the result of the previous sections was above a threshold set for

6-8

those sections. The idea for using this multiple stage template matching system was

taken from Vanderburg and Rosenfeld (211. The order in which the template subsec-

tions were chosen is shown in figure 6.2.

.* 8 1 9

4 2 5
'

6 3 7

Fig 6.2

Order of Template Subsections

* The second addition was to first smooth the data of both the image and the tem-

plate. The thought was that in a real situation, there would be an unpredictable amount

of noise in the image that would cause the target to differ from the template. It was

C thought that in a real scene, no single pixel should be outside the range of adjoining pix-

els except for some sharp edges. If these edges get slightly rounded in the process of

attenuating a good deal of spurious noise, its still worth the effort. In this experiment,

the template contained the same noise as the target so the true usefulness of this process

could not be tested.

The third addition was that after the gradient operation was complete, a two pixel

border around the template was eliminated. The reason for this was that since the back-

ground of the scene was unknown, there was no hope of matching the borders of a

a 6-9

gradient template. So, the correlation was performed with the interior of the gradient

template.

Each template properly located the proper target using the gradient operation

method. However, the peak values only achieved about 20% of the possible maximum

threshold. This corresponds to entering 0.8 for the sum threshold response in the Good-

man - Schwarz program. Without further study, it would be hard to assign a threshold

for the purpose of classification. Using the average equalization method, the two large

targets were located using a threshold criteria of 98% (0.02 in the Goodman - Schwarz

program). However, the smaller target could not be located. This could be a limitation

on the projected area of a target (ie. number of pixels with which to classify with). The

multistage correlation allowed for much faster processing time, reducing the total

E number of calculations by over 80%.

Fig 6.3
Range Image for Testing with Partially Occluded Targets

Finally, a test was performed to determine if this multistage Goodman - Schwarz

correlation could be used to locate partially occluded targets. The partially occluded

6-10

targets were created by strategically placing blocks into the previous range picture. The

resulting picture is shown in fig 6.3. The theory was to set the sum threshold equal to

one so that all sectors would be used at every shift location. A separate threshold was

then set for the sectors. This threshold would determine if a particular sector was to be

counted as a match. A counter was maintained to track how many sectors at each loca-

tion reached above the threshold. After the complete correlation was run, the shift loca-

tions with the top number of sectors would specify the location of the target.

Since previous problems were encountered using the gradient method, only the

average equalization method was used in this test. The two large targets were located

using this method but the small target was unable to be found. For the target in the

lower left corner, only three shift locations in the scene had six sectors reach above a

threshold of 98% (0.02 sub tolerance) and all three were located around the center of the

target. For the target in the middle of the image, two shift locations had five sectors

reach above 99%, both around the center of the target. The partially occluded tanker

truck in the upper right comner could not be located at any threshold. This was expected

since the total target couldn't be found. This target is relatively small and with the

chosen block, has a oout 35% of its sector type information destroyed. At a threshold of

99% there were over 1000 shift locations that had six sector matches, none of those

were on the target. Since the target is relatively flat, the small sectors allowed many

locations within the image to be matched to the target.

This research effort contains some very interesting and promising results, however,

there are still many areas that need to be further explored. Conclusions reached and

recommendations for further research are discussed in the next chapter.

G~6-11

Table 6.1
Correlation Peak Location and Values for

Template and Same Scale Rotated Targets
(Note: Rotation shifts 2.8 pixels / degree rotation.)

*File Name Peak Location Peak Value
R3083-tmp-3083.dat 0,0 145780
R3083_r5_tmnp-083.dat 15,0 113786
R3083_riO-tmp-3083.dat 28,0 114947
R3083riStmp..3083.dat 42,0 114827

*R3083_r20_tmp-3083.dat 56,0 113458
*R3083_r25_tmp..3083.dat 70,0 114292

R3083_r30_tmp-3083.dat 84,0 115316
R3083_r35_tnp.3083.dat 99,0 114628
R3083_r4Qtmp-3083.dat 112,0 114944
R3083 r45 tin 3083.dat 1 124.0 113736

Table 6.2
Correlation Peak Location and Values for
Template and 1/2 Scaled Rotated Targets

(Note: Scale shifts 32 pixels for a 2:1 scale change.)

File Name Peak Location -Peak Value
R3083_s2_tmp..3083.dat 0,32 57692
R3083_s2r5_trnp-383.dat 15,32 54486
R3083_-s2rlO..tmp..3083.dat 29,32 53069
R3083_s2rl5-nip-3083.dat 43,32 54784

*R3083_s2r2Ojxnp-3O83.dat 57,32 53173
R3083_s2r25..tip..3083.dat 70,32 53290
R3083_s2r3Qjinp..3083.dat 85,32 54218
R3083_s2r35-mp..3083.dat 98,32 54785
R3083_s2r40..snp..3083.dat 113,32 54686

1R3083-s2r45-tiny 3083.dat 1 126.32 1 55389--

Table 6.3
Correlation Peak Location and Values for
Template and 1/4 Scaled Rotated Targets

(Note: Both scale and rotation can be calculated.)
jtFile Name Peak Location Peak Value.

R3083_s4_trnp_3083.dat 0,62 53439
R3083_s4r5_tmp-3083.dat 15,62 43481
R3083_s4rlO...tip..3083.dat 27,61 45756
R3083_s4rlI5-jinp-.3083.dat 42,62 47401

CR3083_s4r2Ojinp..3083.dat 57,62 49740
R3083_s4r25-tinp-3083.dat 69,62 51297
R3083_s jr3Onip.3083.dat 83,62 46519
R3083_s4r35-tmp-3083.dat 101,62 48028
R3083_sWr4&tinp-.3083.dat 110,61 47040

IR3083 s4r45 tin 3083.dat 1 125,62 5 1 42

6-12

0

Table 6.4
Files for Set I Experiments

* File Name Image Template
Training Class 1
R3028tamp3028.dat Front Tank Front Tank
R3074_tmp_3074.dat Side Tank Side Tank
R3066tmp_3066.dat Front Tank Front Tank
R3088_tmp_3088.dat Front Tank Front Tank

* R3083_tmp_3083.dat Side Tank Side Tank
R3195_tmp 3195.dat Side Tanker Side Tanker
R3197-tmp3197.dat Front Tank Front Tank
R3215_trp_3215.dat Front Jeep Front Jeep
R3197tr tn 3197tr.dat Side Tanker Side TankerTraining Class 2

* R3028_r1O_tnp_3195.dat Front Tank Side Tanker
r3083_rlO_tmp_3195.dat Side Tank Side Tanker
R3195_riO_tmp_3028.dat Side Tanker Front Tank
R3033_tmp_3028.dat Side Tank Front Tank
R319Qp47_tmp_3090.dat Side Tanker Front Tank
R3033_tmp_3195.dat Side Tank Side Tanker
R3190_p165_tmp_3090.dat Side Tanker Front Tank
R3090_rIOtmp_3195.dat Front Tank Side Tanker
R3197tr t v 3066.dat Side Tanker Front tank
Test Class I
R3042_tmp_3042.dat Side Tank Side Tank
R305 1 tmp_3051 .dat Front Tank Front Tank

| R3090_tmp_3090.dat Front Tank Front Tank
R3190p I 65_tmp_3190_p 165.dat Side Tanker Side Tanker
R3190_p22 l_tmp_3190_p221 .dat Side Tanker Side Tanker
R3190_lM7_tmp_3190_p47.dat Side Tanker Side Tanker
R3195Tanktp_3195Tank.dat Side Tank Side Tank
R3190_T227_tnp_3190_t227.dat Side Tank Side Tank

_R3033 trn 3033.dat Side Tank Side Tank
Test Class 2
R3051l-tmp_3195.dat Front Tank Side Tanker
R3195_riO_tmp.3028.dat Side Tanker Front Tank
R3195Tanktmp_3028.dat Side Tank Front Tank
R3197tr.tmp_3028.dat Side Tanker Front Tank

* R3197tr-tmp_3083.dat Side Tanker Side Tank
R3190_p22l_tmp_3083.dat Side Tanker Side Tank
R3090_tmp_3083.dat Front Tank Side Tank
R3074_tmp_3195.dat Side Tank Side Tanker
R3042 tr 3195.dat Side Tank Side Tanker

6-13

Table 6.5
Training Files for Set 2 Experiments

File Name Image Template
Training Class 1
R3028_tmp3028.dat Front Tank Front Tank
R3028_r40_tmp_3028.dat Rotated Front Tank Front Tank
R3066_tmp3066.dat Front Tank Front Tank
R3066_r40tmnp3066.dat Rotated Front Tank Front Tank
R3074_tmp _ 3074.dat Side Tank Side Tank
R3074_r4 i mp_3074.dat Rotated Side Tank Side Tank
R3088_tmp3088.dat Front Tank Front Tank
R3088_r40_tmp3088.dat Rotated Front Tank Front Tank
R3083_tmp3083.dat Side Tank Side Tank
R3083_r40_tmp_3083.dat Rotated Side Tank Side Tank

• R3195 _tmp _3195.dat Side Tanker Side Tanker
R3195_r40_tmp_3195.dat Rotated Side Tanker Side Tanker
R3042_tmp3042.dat Side Tank Side Tank
R3042 r40 tmp 3042.dat Rotated Side Tank Side Tank
TR3028_R tmp3195.dat Rotated Front Tank side Tanker
R306 _tm p 3195.dat Front Tank Side Tanker

R3066_tmp _3083.dat Front Tank Side Tank
R3074-tmp_3195.dat Side Tank Side Tanker
R3074_tmp 3090.dat Side Tank Front Tank
R3088 _tmp _3190 47.dat Front Tank Side Tanker
R3088_tmp3083.dat Front Tank Side Tank

* R3083_r 10_trp_3195.dat Rotated Side Tank Side Tanker
R3083_rIOtmp3028.dat Rotated Side Tank Front Tank
R3195_r Otmp_3028.dat Rotated Side Tanker Front Tank
R3042_tmp3195.dat Side Tank Side Tanker
R3042 tmp 3090.dat Side Tank Front Tank

BE

P.

,G 6-14

, o t',

4,

Table 6.6
Test Files for Set 2 Experiments

" File Name Image Template
Test Class 1
R3028_rlO-tmp3028.dat Rotated Front Tank Front Tank
R3028_r20_tmp_3028.dat Rotated Front Tank Front Tank
R'n28r30trap3028.dat Rotated Front Tank Front Tank
R3u.o6_rIO_tmp_3066.dat Rotated Front Tank Front Tank
R3066_r20_tmp_3066.dat Rotated Front Tank Front Tank
R3066_r30_tmp-3066.dat Rotated Front Tank Front Tank
R3074_rlOtrnp3074.dat Rotated Side Tank Side Tank
R3074_r20_trmp_3074.dat Rotated Side Tank Side Tank
R3074_r30_tmp_3074.dat Rotated Side Tank Side Tank
R3088_r1O_tmp_3088.dat Rotated Front Tank Front Tank

* R3088_r20_tmp_3088.dat Rotated Front Tank Front Tank
R3088_r30_tmp-3088.dat Rotated Front Tank Front Tank
R3083_r1Otmp_3083.dat Rotated Side Tank Side Tank
R3083_r20_tmp_3083.dat Rotated Side Tank Side Tank
R3083_r30_tnp3083.dat Rotated Side Tank Side Tank
R3195_rIO_tnp_3195.dat Rotated Side Tanker Side Tanker
R3195_r20_tmp_3195.dat Rotated Side Tanker Side Tanker
R3195_r30_tmp-3195.dat Rotated Side Tanker Side Tanker
R3042_rIO_trnp3042.dat Rotated Front Tank Front Tank
R3042_r20_tmp3042.dat Rotated Front Tank Front Tank
R3042 r30 tmp- 3042.dat Rotated Front Tank Front Tank
Test Class 2
R3028_r40_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r40_tnp_3195.dat Rotated Front Tank Side Tanker
R3066_r20_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r40_tnp_3083.dat Rotated Front Tank Side Tank
R3066_r20_tmp-3083.dat Rotated Front Tank Side Tank
R3074_r4Otmp_3195.dat Rotated Side Tank Side Tanker
R3074_r20_ttnp3195.dat Rotated Side Tank Side Tanker
R3074_r40_tmp_3090.dat Rotated Side Tank Front Tank
R3074_r20_tmp_3090.dat Rotated Side Tank Front Tank
R3088_r20_tmp_3195.dat Rotated Front Tank Side Tanker
R3088_r40_tMp_3195.dat Rotated Front Tank Side Tanker
R3088_r20_tmp_3083.dat Rotated Front Tank Side Tank
R3088_r40)_tnp_3083.dat Rotated Front Tank Side Tank
R3042_r20_tmp_3090.dat Rotated Side Tank Front Tank
R3042_r40_tmp_3090.dat Rotated Side Tank Front Tank
R3042_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3042_r40_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r20_tmp_3195.dat Rotated Side Tank Side Tanker

c R3083_r40_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r20_tmp_3028.dat Rotated Side Tank Front Tank
R3083_r40_tmp_3028.dat Rotated Side Tank Front Tank
R3195 r40 tm, 3028.dat Rotated Side Tanker Front Tank

.1'

~6-15

Table 6.7
Class 1 Training Files for Set 3 Experiments

O File Name Image Template
Training Class I
R3197tr-tmp_3195.dat Side Tanker Side Tanker
R3190_p165_tmp_3195.dat Side Tanker Side Tanker
R3190_p22 ltp_3195.dat Side Tanker Side Tanker
R3074_tnp-3083.dat Side Tank Side Tank

* R305 ltmp_3090.dat Front Tank Front Tank
R3042_tmp_3083.dat Side Tank Side Tank
R3090_r40_tmp-3028.dat Rotated Front Tank Front Tank
R3090_tmp_3028.dat Front Tank Front Tank
R3033_r40)tranp3083.dat Rotated Side Tank Side Tank
R3033_r1Otmp_3083.dat Rotated Side Tank Side Tank

fv R3033_tmp_3083.dat Side Tank Side Tank
R3028_tmp_3028.dat Front Tank Front Tank
R3028_r40_tmp-3028.dat Rotated Front Tank Front Tank
R3066_tmp_3066.dat Front Tank Front Tank
R3066_r40_trnp3066.dat Rotated Front Tank Front Tank
R3074_tmp_3074.dat Side Tank Side Tank
R3074_r40_tmp_3074.dat Rotated Side Tank Side Tank
R3088_tmp_3088.dat Front Tank Front Tank
R3088_r40_mp_3088.dat Rotated Front Tank Front Tank
R3083_tmp_3083.dat Side Tank Side Tank
R3083_r40_tmp_3083.dat Rotated Side Tank Side Tank
R3195_tmp3195.dat Side Tanker Side Tanker

* R3195_r40_trnp_3195.dat Rotated Side Tanker Side Tanker
R3042tmp_3042.dat Side Tank Side Tank
R3042 r40 tmp 3042.dat Rotated Side Tank Side Tank

0

6-16

(.M

Table 6.8
Class 2 Training Files for Set 3 Experiments

0 File Name Image Template
Training Class 2
R3197TR_tmp_3028.dat Side Tanker Front Tank
R3197TRtmp_3083.dat Side Tanker F.ont Tank
R3190_p22l-tmp_3090.dat Side Tanker Front Tank
R3190_p221_tmp_3083.dat Side Tanker Side Tank
R3190p 165tnp_3090.dat Side Tanker Front Tank
R3190p 165_tmp_3083.dat Side Tanker Side Tank
R3051-tmp3195.dat Front Tank Side Tanker
R305--tnp9O83.dat Front Tank Side Tank
R3090tmp_3083.dat Front Tank Side Tank
R3090_tmp3195.dat Front Tank Side Tanker

* R3033_tmp_3028.dat Side Tank Front Tank
R3033tmprap3195.dat Side Tank Side Tanker
R3028_RI 0_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_tmp_3195.dat Front Tank Side Tanker
R3066_tmp_3083.dat Front Tank Side Tank
R3074_tmp_3195.dat Side Tank Side Tanker
R3074_tmp_3090.dat Side Tank Front Tank
R3088_tmp_3195.dat Front Tank Side Tanker
R3088_tmp_3083.dat Front Tank Side Tank
R3083_r1Otnp3195.dat Rotated Side Tank Side Tanker
R3083_rIO_tmp-3028.dat Rotated Side Tank Front Tank
R3195_rI 0_tmp_3028.dat Rotated Side Tanker Front Tank

w R3042_trnp_3195.dat Side Tank Side Tanker
I R3042 tmv-3090.dat Side Tank Front Tank

b.1.

6-17

Table 6.9
Class 1 Test Files for Set 3 Experiments

* File Name Image Template
Test Class 1
R3l9Qtmp_3083.dat Side Tank Side Tank
R3088_tmp_3090.dat Front Tank Front Tank
R3035_tmp_3083.dat Side Tank Side Tank
R3066_tnp_3090.dat Front Tank Front Tank

* R3190 1p47tmp_3195.dat Side Tanker Side Tanker
R3197TRr40_tmp3195.dat Rotated Side Tanker Side Tanker
R3195TANKtnp_3083.dat Side Tank Side Tank
R3195TANK_r4O_tmp_3083.dat Rotated Side Tank Side Tank
R3090-r30-trp-3028.dat Rotated Front Tank Front Tank
R3090_r20_tmp_3028.dat Rotated Front Tank Front Tank* R3090_rOtmp_3028.dat Rotated Front Tank Front Tank
R3033_r30_tmp_3083.dat Rotated Side Tank Side Tank
R3033_r20_tmp_3083.dat Rotated Side Tank Side Tank
R3028_r1O_tmp_3028.dat Rotated Front Tank Front Tank
R3028_r20_ mp_3028.dat Rotated Front Tank Front Tank
R3028_r30_tmp_3028.dat Rotated Front Tank Front Tank
R3066_rO_tmp_3066.dat Rotated Front Tank Front Tank
R3066_r20_tmp_3066.dat Rotated Front Tank Front Tank
R3066_r30_tmp_3066.dat Rotated Front Tank Front Tank
R3074_rO_tmp_3074.dat Rotated Side Tank Side Tank
R3074_r20_tmp-3074.dat Rotated Side Tank Side Tank
R3074_r30_tmp_3074.dat Rotated Side Tank Side Tank

* R3088_rO_tmp_3088.dat Rotated Front Tank Front Tank
R3088_r20_tmp_3088.dat Rotated Front Tank Front Tank
R3088_r30_tmp_3088.dat Rotated Front Tank Front Tank
R3083_r1O_tmp_3083.dat Rotated Side Tank Side Tank
R3083_r20 tmp_3083.dat Rotated Side Tank Side Tank
R3083_r30_tmp_3083.dat Rotated Side Tank Side Tank
R3195_rO_tnp_3195.dat Rotated Side Tanker Side Tanker
R3195_r20_tnp_3195.dat Rotated Side Tanker Side Tanker
R3195_r30_mp-3195.dat Rotated Side Tanker Side Tanker
R3042_r10_nmp_3042.dat Rotated Front Tank Front Tank
R3042_r20_mp_3042.dat Rotated Front Tank Front Tank

I R3042 r30 md 3042.dat Rotated Front Tank Front Tank

6-18

Table 6.10
Class 2 Test Files for Set 3 Experiments

File Name Image Template
Test Class 2
R3195TANKtmp_3028.dat Side Tank Front Tank
R3195TANKtmp_3195.dat Side Tank Side Tanker
R3197TRjtmp3090.dat Side Tanker Front Tank
R3197TRtmp_3083.dat Side Tanker Side Tank

* R3190_p47_tmp_3090.dat Side Tanker Front Tank
R3190_p47tnp_3083.dat Side Tanker Side Tank
R3190_T227_tnp_3090.dat Side Tank Front Tank
R3190_T227_tmp_3195.dat Side Tank Side Tanker
R3035_tmp_3090.dat Side Tank Front Tank
R3035_tmp_3195.dat Side Tank Side Tanker

* R3090_r1Otmp_3083.dat Rotated Front Tank Side Tank
R3090_rlOtmp_3195.dat Rotated Front Tank Side Tanker
R3090_r20_tmp_3083.dat Rotated Front Tank Side Tank
R3090_r30_tmp-3083.dat Rotated Front Tank Side Tank
R3090_r20_tmp_3195.dat Rotated Front Tank Side Tanker
R3090_r30_tmp_3195.dat Rotated Front Tank Side Tanker
R3033_r20_tmp_3028.dat Rotated Side Tank Front Tank
R3033_r30tmp_3028.dat Rotated Side Tank Front Tank
R3033_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3033_r30tmp_3195.dat Rotated Side Tank Side Tanker
R3028_r40_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r40_tmp_3195.dat Rotated Front Tank Side Tanker

• R3066_r20_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r40_tmp_3083.dat Rotated Front Tank Side Tank
R3066_r20_tmp_3083.dat Rotated Frort Tank Side Tank
R3074_r40_tmp_3l95.dat Rotated Side Tank Side Tanker
R3074_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3074_r40_tmp_3090.dat Rotated Side Tank Front Tank
R3074_r20_tmp_3090.dat Rotated Side Tank Front Tank
R3088_r20_tnp_3l95.dat Rotated Front Tank Side Tanker
R3088_r40_tmp_3195.dat Rotated Front Tank Side Tanker
R3088_r20_tmp_3083.dat Rotated Front Tank Side Tank
R3088_r40_tmp_3083.dat Rotated Front Tank Side Tank
R3042_r20_tmp-3090.dat Rotated Side Tank Front Tank
R3042_r40_tmp_3090.dat Rotated Side Tank Front Tank
R3042_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3042_r40_tmp3195.dat Rotated Side Tank Side Tanker
R3083_r20_trnp_3195.dat Rotated Side Tank Side Tanker
R3083_r40_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r20_trnp3028.dat Rotated Side Tank Front Tank
R3083_r40_tmp_3028.dat Rotated Side Tank Front Tank
R3195_r40 try 3028.dat Rotated Side Tanker Front Tank

6-19

Table 6.11
Classification Results for Set 1 Range Data

0 (Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
Node I Node 2

Training Class I
R3028_tmp_3028.dat 0.0724 0.9631 0.0364

• R3074_tmp_3074.dat 0.0388 0.9629 0.0366
R3066_tmp_3066.dat 0.1199 0.9631 0.0364
R3088_tmp_3088.dat 0.0783 0.9631 0.0364
R3083_tmp_3083.dat 0.0806 0.9625 0.0370
R3195_tmp3195.dat 0.1298 0.9546 0.0448
R3197_tap_3197.dat 0.0666 0.9631 0.0364

0 R3215_tmp_3215.dat 0.1088 0.9631 0.0363
R3197tr tmp 3197tr.dat 0.1365 0.9143 0.0848
Training Class 2
R3028_r I0_tmp_3195.dat 0.2721 0.0399 0.9604
R3083_rIOtmp_3195.dat 0.2756 0.0408 0.9595
R3195r I 0_tmp_3028.dat 0.2355 0.0739 0.9264
R3033_tmp_3028.dat 0.2129 0.0805 0.9198
R3190p47_tmp_3090.dat 0.2144 0.0521 0.9482
R3033-tmp3195.dat 0.2876 0.0397 0.9606
R3190p 165_tmp_3090.dat 0.2142 0.0498 0.9504
R3090r1Otrap_3195.dat 0.2784 0.0391 0.9611
R3197tr tnp_3066.dat 0.3102 0.0387 0.9615
Test Class 1
R3042tmp_3042.dat 0.0682 0.9631 0.0364
R3051ltmp_3051.dat 0.0942 0.9631 0.0364
R3090-tmp_3090.dat 0.1734* 0.9631 0.0363
R3190p 1 65_tmp3190-p I 65.dat 0.0437 0.9624 0.0371
R3190p22 l tmp_3l90_p221 .dat 0.0834 0.9623 0.0371
R3190 p47_tmp_3190_p47.dat 0.0514 0.9628 0.0366
R3195Tank_trp_3195Tank.dat 0.1138 0.9579 0.0415
R3190_T227tmp3190_t227.dat 0.1214 0.9631 0.0363
R3033 tmp_3033.dat 0.4311 0.1164 0.0365
Test Class 2
R305l-tmp_3195.dat 0.2707 0.04 11 0.9592
R3195_rIOtmp_3028.dat 0.2355 0.0739 0.9264
R3195Tanktmp_3028.dat 0.1784* 0.1866 0.8135
R3197trjtmp_3028.dat 0.3136 0.0387 0.9615
R3197tr-tmp_3083.dat 0.3157 0.0386 0.9616
R3190p221 mp_.3083.dat 0.2542 0.0425 0.9577
R3090-tmp_3083.dat 0.2673 0.0417 0.9585
R3074trap_3195.dat 0.2781 0.0394 0.9609
R3042 tmroD3195.dat 0.2915 0.0392 1 0.9610
* Represents a misclassified result or classification with a very low figure of merit.

(Note: With thresholds of 0.8 and 0.2, the neural net
gives perfect results with an excellent figure of merit.)

6-20

Table 6.12
Classification Results for Set 1 Binary Data

(Note: Distances are calculated from the center of the class I training data.)

File Name Distance Neural Net
Node I Node 2

Training Class I
R3028_btmp_3028.dat 0.1181 0.9701 0.0301
R3074_btmp_3074.dat 0.0376 0.9699 0.0303
R3066btmp3066.dat 0.1042 0.9701 0.0302
R3088_btmp_3088.dat 0.0540 0.9701 0.0302
R3083_btmp_3083.dat 0.0717 0.9696 0.0306
R3195_btmp_3195.dat 0.1079 0.9675 0.0328
R3197_btmp_3197.dat 0.0544 0.9699 0.0303
R3215_btmp_3215.dat 0.0942 0.9701 0.0301
R3197tr btmp_3197tr.dat 0.1230 0.9440 0.0566
Training Class 2
R3028_rlObtmp_3195.dat 0.2477 0.3699* 0.6312*
R3083_r10_btmp_3l95.dat 0.2481 0.0460 0.9537
R3195_rlO_btmp_3028.dat 0.1905 0.0479 0.9518
R3033_btmp_3028.dat 0.1728 0.0624 0.9372
R3190_p47_btmp_3090.dat 0.2468 0.0446 0.9551
R3033_btmp_3195.dat 0.2523 0.0443 0.9554
R3190p 165_btmp_3090.dat 0.1877 0.0610 0.9386
R3090_rlObtmp_3195.dat 0.2382 0.0450 0.9547
R3197tr btmp_3066.dat 0.2757 0.0439 0.9558
Test Class 1

• R3042_btmp"3042.dat 0.0376 0.9701 0.0302
R3051lbtmp3051 .dat 0.0640 0.9701 0.0302
R3090_btmp_3090.dat 0.0971 0.9701 0.0301
R319 0 _p 165_btmp.3190_p I 65.dat 0.0326 0.9700 0.0303
R3190_p22 l btmp 3l90_p221 .dat 0.0686 0.9699 0.0304
R3190_p47_btmp_3190_p47.dat 0.0539 0.9701 0.0302

0 R3195Tank-btmp_3195Tank.dat 0.1058 0.9681 0.0322
R3190_t227_btmp_3190_t227.dat 0.0578 0.9701 0.0302
R3033_btmp_3033.dat 0.0735 0.9695 0.0307
Test Class 2
R305 1.btmp_3195.dat 0.2632 0.0443 0.9554
R3195_rI0_btmp.3028.dat 0.1905 0.0479 0.9518

6; R3195Tankbtmp_3028.dat 0.2548 0.0451 0.9546
R3197tr-btmp_3028.dat 0.2791 0.0439 0.9558
R3197tr-btmp_3083.dat 0.2794 0.0439 0.9558
R319Op22 I btmp_3083.dat 0.2273 0.0456 0.9540
R3090_btmp_3083.dat 0.2298 0.0455 0.9542
R3074_btmp_3195.dat 0.2528 0.0449 0.9548
R3042 btmp_3195.dat 0.2545 0.0447 0.9550

* Values progressed to 0.1655 and 0.8347 after 9000 training file iterations.
(Note: Both methods gave perfect classification.

No significant difference between range and binary data.)

6-21

Table 6.13
Classification Results for Set 2 Range Training Data

40 (Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
Node I Node 2

Training Class 1
R3028_tmp_3028.dat 0.1321 0.9842 0.0140

0 R3028_r40_tmp_3028.dat 0.0575 0.9836 0.0150
R3066_tmp_3066.dat 0.1390 0.9844 0.0137
R3066_r40_tmp_3066.dat 0.1342 0.9807 0.0184
R3074_tmp_.3074.dat 0.0464 0.9840 0.0145
R3074_r40_tmp_3074.dat 0.1074 0.9786 0.0209
R3088_trp_3088.dat 0.1272 0.9840 0.0144

• R3088_r40_tmp_3088.dat 0.0419 0.9822 0.0169
R3083_tmp_3083.dat 0.0678 0.9835 0.0151
R3083_r40_tmp_3083.dat 0.0667 0.9824 0.0165
R3195_tmp_3195.dat 0.0906 0.9795 0.0200
R3195_r40_tmp_3195.dat 0.1207 0.9553 0.0465
R3042_tmp_3042.dat 0.1222 0.9844 0.0138
R3042 r40 tmp_3042.dat 0.1419 0.9730 0.0278
Training Class 2
R3028_RI 0_trp_3195.dat 0.2158 0.0177 0.9835
R3066_tmp_3195.dat 0.2394 0.0156 0.9862
R3066_tmp_3083.dat 0.2489 0.0154 0.9865
R3074_tmp_3195.dat 0.2221 0.0168 0.9846
R3074_tmp_3090.dat 0.1734 0.0220 0.9794

• R3088_tmp_ 3190_p47.dat 0.2160 0.0170 0.9843
R3088_tmp_3083.dat 0.2119 0.0191 0.9821
R3083_riO1_tmp_3195.dat 0.2213 0.0173 0.9841
R3083_rIO _tmp_3028.dat 0.2057 0.0204 0.9808
R3195_rIO _tmp-3028.dat 0.1828 0.0421 0.9576
R3042_tmp_3195.dat 0.2366 0.0164 0.9851

6 R3042 tmp_3090.dat 0.2093 0.0235 0.9768

(Note: Distance threshold at 0.16)

6 6-22

777I

Table 6.14
Classification Results for Set 2 Range Test Data

(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
_________________ Nodel1 Node 2

Test Class 1
R3028_ rI _tmp_3028.dat 0.0579 0.9834 0.0153

S R3028_r20_tmp_3028.dat 0.0501 0.9837 0.0148
R3028_r30_tmp 3028.dat 0.0528 0.9835 0.0151
R3066_rIOtmp_3066.dat 0.1119 0.9824 0.0168
R3066 r20 tmp_3066.dat 0.1468 0.9825 0.0166
R3066_r30 tmp_3066.dat 0.0997 0.9832 0.0156
R3074_r Otmp_3074.dat 0.1102 0.8776 0.1226

* R3074_r20_tmp_3074.dat 0.1134 0.8258 0.1732
R3074_r30_tmp_3074.dat 0.1401 0.6706* 0.3310
R3088_rO_tmp_.3088.dat 0.0455 0.9828 0.0161
R3088_r20_tmp-3088.dat 0.0355 0.9833 0.0154
R3088_r30_tmp_3088.dat 0.0397 0.9836 0.0150
R3083_riO_tmp_3083.dat 0.0723 0.9818 0.0172
R3083_r20_tnp_383.dat 0.0699 0.9828 0.0160
R3083_r30_trnp_3083.dat 0.0655 0.9824 0.0165
R3195_rIO _trap_3195.dat 0.1291 0.9112 0.0917
R3195_r20_tmp_3195.dat 0.1264 0.9380 0.0647
R3195_r30_tmp_3195.dat 0.1174 0.9489 0.0528
R3042_ri Otmp_3042.dat 0.1162 0.9801 0.0191
R3042_r20_tmp-3042.dat 0.0929 0.9822 0.0167
R3042 r30 tm _3042.dat 0.1419 0.9808 0.0186
Test Class 2
R3028_r40_tmp_3195.dat 0.2489 0.0159 0.9858
R3066_r40_tmp_3195.dat 0.2410 0.0159 0.9858
R3066_r20_tmp_3195.dat 0.2359 0.0159 0.9858
R3066_r40_tmp_3083.dat 0.2482 0.0153 0.9867
R3066_r20_tmp_3083.dat 0.2026 0.0191 0.9819
R3074_r40_tmp_3195.dat 0.2454 0.0154 0.9866
R3074_r20_tmp_3195.dat 0.2285 0.0161 0.9856
R3074_r40_tmp_3090.dat 0.2010 0.0360 0.9623
R3074_r20_tmp_3090.dat 0.1677 0.0416 0.9575
R3088_r20 tmp_3195.dat 0.2402 0.0159 0.9858
R3088_r40_tmp_3195.dat 0.2468 0.0167 0.9849
R3088_r20_tmp_3083.dat 0.1887 0.0558 0.9417
R3088_r40_tmp_..3083.dat 0.1732 0.1201 0.8722
R3042_r20_tmp_3090.dat 0.2208 0.0187 0.9834
R3042_r40_tmp_3090.dat 0.2286 0.0166 0.9851
R3042_r20_tmp_3195.dat 0.2433 0.0161 0.9854
R3042_r40_Otrp_3195.dat 0.2362 0.0165 0.9850
R3083_r20trap_3195.dat 0.2262 0.0183 0.9828
R3083_r40_tmp_3195.dat 0.2250 0.0176 0.9837
R3083_r20_tmp_3028.dat 0.2153 0.4513 0.5635*
R3083_r40_tmp_3028.dat 0.1872 0.2668 0.7398*
R3195_r40 tmp_3028.dat 0.2280 0.0182 0.9833

* Represents a nonclassification with thresholds of 0.8 and 0.2
(Note: Distance classifications are good, but at the expense of a figure of merit.)

6-23

Table 6.15
Classification Results for Set 2 Binary Training Data

(Note: Distances are calculated from the center of the class I training data.)

File Name Distance Neural Net
Node I Node 2

Training Class 1
R3028_btmp_3028.dat 0.1619* 0.9764 0.0213
R3028_r40_btmp_3028.dat 0.0615 0.9758 0.0231
R3066_btmp_3066.dat 0.1209 0.9766 0.0207
R3066_r40_btmp_3066.dat 0.1070 0.9677 0.0314
R3074_btmp_3074.dat 0.0345 0.9758 0.0226
R3074_r40_btmp_3074.dat 0.1030 0.9567 0.0438
R3088_btmp_3088.dat 0.0886 0.9757 0.0231
R3088_r40_btmp_3088.dat 0.0309 0.9724 0.0269

w R3083_btmp_3083.dat 0.0582 0.9750 0.0235
R3083_r40_btmp_3083.dat 0.0663 0.9717 0.0274
R3195_btmp_3195.dat 0.0824 0.9713 0.0279
R3195_r40_btmp_3195.dat 0.1030 0.9569 0.0444
R3042_btmp_3042.dat 0.0772 0.9763 0.0216
R3042 r40 btm]_3042.dat 0.0980 0.9494 0.0523
Training Class 2
R3028_RIO_btmp_3195.dat 0.2066 0.0222 0.9812
R3066_btmp_3195.dat 0.2171 0.0222 0.9814
R3066_btmp_3083.dat 0.2159 0.0417 0.9639
R3074_btmp_3195.dat 0.2137 0.0221 0.9819
R3074_btmp_3090.dat 0.1521 0.0460 0.9557

* R3088_btmp_3190_p47,dat 0.2002 0.0230 0.9806
R3088_btmp_3083.dat 0.1822 0.0346 0.9663
R3083_r1O_btmp_3195.dat 0.2083 0.0234 0.9797
R3083_rO_btmp_3028.dat 0.1851 0.0243 0.9783
R3195_rlO_btmp_3028.dat 0.1522 0.0439 0.9579
R3042_btmp_3195.dat 0.2138 0.0230 0.9804

* R3042 btmp_3090.dat 0.1892 0.0310 0.9713
* Indicates a misclassification with a distance threshold of 0.14
(Note: the training set with the neural net is perfectly classified.)

62

~6-24

Table 6.16
Classification Results for Set 2 Binary Test Data

(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
Node I Node 2

Test Class I
R3028_rIObtmp_3028.dat 0.0475 0.9758 0.0230

* R3028_r20_btmp-3028.dat 0.0589 0.9759 0.0226
R3028_r30_btmp_3028.dat 0.0550 0.9754 0.0237
R3066_rObtmp_3066.dat 0.1105 0.9570 0.0464
R3066_r20_btmp_3066.dat 0.1305 0.9729 0.0277
R3066_r30_btmp_3066.dat 0.1072 0.9758 0.0223
R3074_rIObtmp_3074.dat 0.1218 0.3602 0.6323*

* R3074_r20_btmp_3074.dat 0.1076 0.7895 0.2161
R3074_r30_btmp_3074.dat 0.1263 0.5568 0.4477
R3088_riObtmp_3088.dat 0.0313 0.9723 0.0274
R3088_r20_btmp_3088.dat 0.0254 0.9738 0.0259
R3088_r30_btmp_3088.dat 0.0206 0.9744 0.0246
R3083_riObtmp_3083.dat 0.0716 0.9674 0.0325
R3083_r20_btmp_3083.dat 0.0664 0.9708 0.0286
R3083_r30_btmp_3083.dat 0,0666 0.9717 0.0271
R3195_r I Obtmp_3195.dat 0.1111 0.9147 0.0903
R3195_r20btmp_3195.dat 0.1116 0.9389 0.0648
R3195_r30_btmp_3l95.dat 0.1019 0.9457 0.0566
R3042_riObtmp_3042.dat 0.1012 0.7934* 0.2253
R3042_r20_btmp_3042.dat 0.0841 0.9701 0.0302
R3042 r30 btmp_3042.dat 0.0916 0.9493 0.0521
Test Class 2
R3028_r40_btmp_3195.dat 0.2192 0.0220 0.9809
R3066_r40_btmp_3195.dat 0.2255 0.0218 0.9820
R3066_r20_btmp-3195.dat 0.2218 0.0222 0.9814
R3066_r40_btmp_3083.dat 0.2088 0.0260 0.9781
R3066_r20_btmp_3083.dat 0.1847 0.0256 0.9768
R3074_r40_btmp_3l95.dat 0.2158 0.0221 0.9809
R3074_r20_btmp_3195.dat 0.2018 0.0228 0.9806
R3074_r40_btmp_3090.dat 0.1941 0.0243 0.9780
R3074_r20_btmp_3090.dat 0.1937 0.0237 0.9793
R3088_r20_btmp_3195.dat 0.2188 0.0217 0.9819
R3088_r40_bmnp_3195.dat 0.2138 0.0221 0.9814
R3088_r20_btmp_3083.dat 0.1803 0.0356 0.9649
R3088_r40_btmp_3083.dat 0.1637 0.0580 0.9426
R3042_r20_btmp_3090.dat 0.1669 0.0254 0.9777
R3042_r40_btmp_3090.dat 0.1680 0.0353 0.9660
R3042_r20_btmp_3195.dat 0.2163 0.0217 0.9822
R3042_r40-btmp_3195.dat 0.2089 0.0231 0.9808
R3083_r20_btmp_3195.dat 0.2179 0.0232 0.9799
R3083_r40_btmp_3195.dat 0.2154 0.0231 0.9800
R3083_r20_btmp_3028.dat 0.1947 0.0239 0.9786
R3083_r40_btmp_3028.dat 0.1890 0.0280 0.9732
R3195 r40 btmp_3028.dat 0.1772 0.0266 0.9749

* Represents a nonclassification with thresholds of 0.8 and 0.2
(Note: Both methods give good classification results.)

6-25

Table 6.17
Classification Results for Class 1 Set 3 Range Training Data

(Note: Distances are calculated from the center of the class I training data.)

File Name Distance Neural Net
Node I Node 2

Training Class 1
R3197tr trap_3195.dat 0.1548* 0.0973 0.9027**
R3190_p 165_tmp_3195.dat 0.1565* 0.9799 0.0193
R3190_.p22 ltmp_3195.dat 0.1748* 0.0973 0.9028**
R3074_tmp_3083.dat 0.1222 0.9837 0.0156
R305 ltmp_3090.dat 0.1268 0.9764 0.0228
R3042tmp3083.dat 0.1117 0.9988 0.0012
R3090_r40_tmp-3028.dat 0.1822* 0.9970 0.0030
R3090_-tmp_3028.dat 0.1602* 0.9956 0.0043

* R3033_r40_tmp_3083.dat 0.1444* 0.9837 0.0156
R3033_rI _tmp_3083.dat 0.1278 0.9837 0.0156
R3033 tmp_ 3083.dat 0.1321 0.9837 0.0156
R3028_tmp_.3028.dat 0.2069* 0.9970 0.0030
R3028_r40_tmp_3028.dat 0.0887 0.9970 0.0030
R3066_tmp_3066.dat 0.2057* 0.9970 0.0030r R3066_r40_tmp_3066.dat 0.1121 0.9968 0.0032
R3074_tmp_3074.dat 0.1187 0.9970 0.0030
R3074_r40_tnp_3074.dat 0.0625 0.9963 0.0037
R3088_tmp_3088.dat 0.1978* 0.9970 0.0030
R3088_r40 tmp_3088.dat 0.0842 0.9970 0.0030
R3083_tmp_3083.dat 0.1157 0.9970 0.0030

, R3083_r40_tmp_3083.dat 0.0605 0.9970 0.0030
R3195_trp_3195.dat 0.0861 0.9970 0.0030
R3195_r40_tmp_3195.dat 0.0679 0.9969 0.0031
R3042_tmp_3042.dat 0.2021 * 0.9970 0.0030
R3042 r40_tm,_3042.dat 0.1114 0.9970 0.0030

* Represents a misclassification at a distance threshold of 0.135
** Represents a neural net misclassification

(Note: The two files that could not be trained with the neural net
have a large scale difference between template and target.)

46

G 6-26

Table 6.18
Classification Results for Class 2 Set 3 Range Training Data

(Note: Distances are calculated from the center of the class I training data.)
p

File Name Distance Neural Net
Node I Node 2

Training Class 2
R3197TRtmp_3028.dat 0.1784 0.0975 0.9025
R3197TR_tmp_3083.dat 0.1803 0.0972 0.9028
R3190_-p22ltmp_3090.dat 0.1048* 0.0976 0.9024
R3190ip221 -tmp_3083.dat 0.1200* 0.0974 0.9027
R3 l 90pl65tmp3090.dat 0.1062* 0.0977 0.9024
R3190_p 65_tmp3083.dat 0.1249* 0.0973 0.9027
R3051 _trp_3195.dat 0.1366 0.0973 0.9027

O R305Iltmp_3083.dat 0.1599 0.0973 0.9027
R3090_- tmp_3083.dat 0.1343* 0.0974 0.9026
R3090_tmp_3195.dat 0.1411 * 0.0973 0.9027
R3033_- tmp_3028.dat 0.1241 * 0.0974 0.9027
R3033_trap_3195.dat 0.1566 0.0974 0.9027
R3028_rlOtmprap3195.dat 0.1365 0.0973 0.9027
R3066_tmp_3195.dat 0.1596 0.0974 0.9027
R3066_tmp_3083.dat 0.1688 0.0972 0.9028
R3074_tmp_3195.dat 0.1413 0.0985 0.9015
R3074_tmp_3090.dat 0.1060* 0.0975 0.9025
R3088tmp_3195.dat 0.1597 0.0973 0.9027
R3088_tmp_3083.dat 0.1383 0.1000 0.9000
R3083r 10 trp 3195.dat 0.1427 0.0974 0.9027
R3083_r 1Otmp_3028.dat 0.1439 0.0979 0.9022
R3195_rlO _tmnp_3028.dat 0.1188* 0.0974 0.9027
R3042_ trap_3195.dat 0.1586 0.0972 0.9028
R3042 tmp 3090.dat 0.1535 0.0974 0.9027

* Represents a misclassification at a threshold of 0.135
* •(Note: The ability of a neural net to train and seperate very poorly distributed

data is outstanding. The key to classifying test data, is to insure the training
*i data is a good representation of all the data.)

p

.,

t.. 6-27

Table 6.19
Classification Results for Class I Set 3 Range Test Data

(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
Node l Node 2

Test Class I
R3190_tnp_3083.dat 0.1441* 0.0974 0.9026*
R3088_tmp_3090.dat 0.1372* 0.9837 0.0155
R3035_rp_3083.dat 0.1256 0.9829 0.0164
R3066_tmp_3090.dat 0.1088 0.0972 0.9028*
R3190_p47_tnp 3195.dat 0.1629* 0.1032 0.8966*
R3197TR r40 tmp_3195.dat 0.1582* 0.0973 0.9027*
R3195TANK_tmp_3083.dat 0.1668* 0.9770 0.0220
R3195TANKr40tmp_3083.dat 0.1632* 0.0992 0.9008*
R3090_r30_tmp-3028.dat 0.1443* 0.6513** 0.3472
R3090_r20_tmp-3028.dat 0.1327 0.0977 0.9024*
R3090_rI Otmp_3028.dat 0.1780* 0.0974 0.9026*
R3033_r30_tmp_3083.dat 0.1374* 0.9837 0.0156
R3033_r20_tmp_3083.dat 0.1288 0.9837 0.0156
R3028riO1_tmp_3028.dat 0.0829 0.9970 0.0030
R3028_r20_tmp_3028.dat 0.0901 0.9970 0.0030
R3028_r30_tmp_3028.dat 0.1026 0.9970 0.0030
R3066_rI Otmp_3066.dat 0.1092 0.9970 0.0030
R3066_r20_tmp_3066.dat 0.1428* 0.9970 0.0030
R3066_r30_tmp-3066.dat 0.0980 0.9970 0.0030
R3074_r1Otmp_3074.dat 0.0451 0.9169 0.0823

* R3074_r20_tmp_3074.dat 0.0541 0.9963 0.0036
R3074_r30_tmp_3074.dat 0.0716 0.9851 0.0147
R3088_rl Otmp_3088.dat 0.1014 0.9970 0.0030
R3088_r20_tmp_3088.dat 0.0942 0.9970 0.0030
R3088_r30_tnp_3088.dat 0.1059 0.9970 0.0030
R3083_rO _trp_.3083.dat 0.0580 0.9970 0.0030
R3083_r20_tmp_3083.dat 0.0609 0.9970 0.0030
R3083_r30_tmp_3083.dat 0.0614 0.9970 0.0030
R3195_rIO_tmp_3195.dat 0.0689 0.9924 0.0075
R3195_r20_tmp-3195.dat 0.0688 0.9967 0.0032
R3195_r30_tmp_3195.dat 0.0664 0.9969 0.0030
R3042_r Otmp_3042.dat 0.0956 0.9970 0.0030
R3042_r20_tmp_3042.dat 0.0774 0.9970 0.0030
R3042 r30 tmp 3042.dat 0.1150 0.9969 0.0030

• Represents a misclassification
** Represents a nonclassification

(Note: All the neural net misclassifications are in the same target-
different view autocorrelation class. See note below Table 6.18.)

V

6-28

Table 6.20
Classification Results for Class 2 Set 3 Range Test Data

(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
Node 1 Node 2

Test Class 2
R3195TANK-tmp_3028.dat 0.0866* 0.9973* 0.0027
R3195TANK-tmp3195.dat 0.1376 0.0974 0.9027

* R3197TRtnp_3090.dat 0.1771 0.0973 0.9028
R3197TRtmp_3083.dat 0.1803 0.0972 0.9028
R3190_p47_tmp_3090.dat 0.1067* 0.1071 0.8929
R3190_p47_tmp_3083.dat 0.1028* 0.0974 0.9027
R3190_T227_tmp_3090.dat 0.0825* 0.0976 0.9025
R3190_T227_tmp3195.dat 0.1385 0.0973 0.9027

* R3035trnp_3090.dat 0.0927* 0.0974 0.9026
R3035_tmp_3195.dat 0.1386 0.0973 0.9027
R3090_rOtmp_3083.dat 0.1278* 0.0974 0.9027
R3090_rO_tmp_3195.dat 0.1411 0.1005 0.8994
R3090_r20_tmp_3083.dat 0.1206* 0.9836* 0.0157
R3090_r30_tmp-3083.dat 0.1247 * 0.1542 0.8443
R3090_r20_tmp-3195.dat 0.1420 0.1011 0.8988
R3090_r30_trnp_3195.dat 0.1430 0.9837* 0.0156
R3033_r20_tmp_3028.dat 0.1413 0.9837* 0.0156
R3033_r30_tmp_3028.dat 0.1020* 0.0975 0.9026
R3033_r20_tmp-3195.dat 0.1618 0.9795* 0.0197
R3033_r30_tmp_3195.dat 0.1491 0.0972 0.9028

* R3028 r40_tmp_3195.dat 0.1678 0.0975 0.9025
R3066_r40_tmp_3l95.dat 0.1597 0.9558* 0.0423
R3066_r20_tmp_3195.dat 0.1553 0.0975 0.9025
R3066_r40_tmp_3083.dat 0.1674 0.0977 0.9023
R3066_r20_tmp_3083.dat 0.1228* 0.1699 0.8284
R3074_r40_tmp_3195.dat 0.1649 0.0973 0.9027

* R3074_r20_tmp_3195.dat 0.1485 0.0973 0.9027
R3074_r40_tmp_3090.dat 0.1320* 0.0974 0.9027
R3074_r20_tmp_3090.dat 0.0916* 0.0974 0.9027
R3088_r20_tmp_3195.dat 0.1596 0.9837* 0.0156
R3088_r40_tmp_3195.dat 0.1685 0.9640* 0.0346
R3088_r20_tmp_3083.dat 0.1150* 0.Cq78 0.9022
R3088_r40_tmp_3083.dat 0.1031 * 0.0974 0.9027
R3042_r20_tmp_3090.dat 0.1753 0.0974 0.9027
R3042_r40_tmp_3090.dat 0.1601 0.0973 0.9027
R3042_r20_tmp_3195.dat 0.1646 0.0972 0.9028
R3042_r40_tmp_3195.dat 0.1569 0.1091 0.8907
R3083_r20_tmp_3195.dat 0.1481 0.0975 0.9026

C R3083_r40_tmp_3195.dat 0.1473 0.0974 0.9027
R3083_r20_tmp_3028.dat 0.1858 0.9994* 0.0006
R3083_r40_tmp_3028.dat 0.1414 0.0995 0.9005
R3195_r40 tmj_ 3028.dat 0.1581 0.0976 0.9025

* Represents a misclassification

6-29

Table 6.21
Classification Results for Class 1 Set 3 Binary Training Data

(Note: Distances are calculated from the center of the class I mrining data.)

File Name Distance Neural Net
_____________Node I Node 2

Taning Class I ______

R3197tr..btmnp_3195.dat 0. 1421* 0.0885 0.9113**
R3190..p65btmp-3195.dat 0. 1540* 0.9998 0.0002
R319Qp22Lbtmp-319S.dat 0.1503* 0.0887 0.9111 **
R3074-..btnp-3O83.dat 0.1229 0.9997 0.0002
R305 I .btmp-3O9O.dat 0.0955 0.9964 0.0029
R3042..btmp-3O83.dat 0.0927 0.9944 0.0047
R3090_r40_btmp_3028.dat 0.1132 0.9888 0.0113
R3090-btmnp 028.dat 0.0948 0.9959 0.0034
R3033_r40_btmp-3083.dat 0.1345* 0.9964 0.0042
R3033rHO btmp-3083.dat 0. 1270* 0.9822 0.0 198
R3033...btmp-3O83.dat 0.1184 0.9721 0.0314
R3028-btmp-3028.dat 0.2383* 0.9941 0.0049
R3028_r40_btnip.3028.dat 0.1242 0.9939 0.005 1
R3O66-btmnp-3066.dat 0.1831* 0.9939 0.0051
R3066_r40_bump-.3066.dat 0.0706 0.9938 0.0052
R3074-btrnp-074.dat 0.1028 0.9924 0.0061
R3074_-r40_-btmp-3O74.dat 0.0453 0.9937 0.0052
R3088&btmp-3O88.dat 0.1597 * 0.9908 0.0081
R3088_-r40_-btmp-3O88.dat 0.0696 0.9948 0.0044
R3O83-btmp..3083.dat 0.1036 0.9995 0.0004

i* R3083_r40_btmp-3O83.dat 0.0510 0.9966 0.0028
R3195-.btmp-3l9S.dat 0.0938 0.9985 0.0012
R3195_-r40_-btmp-3l9S.dat 0.0668 0.9963 0.0030
R3042-btmp-3042.dat 0. 1554* 0.9939 0.005 1
R3042 r40 btmp-3042.dat 0.0635 0.9939 1 0.0051 _

*Represents a misclassification at a threshold of 0. 125
** Represents a neural net misclassification

(Note: The two files that could not be trained with the neural net
have a large scale difference between template and target. Also, these
are the same two files that could not be trained using the range data.)

6-30

Table 6.22
Classification Results for Class 2 Set 3 Binary Training Data

(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
.. Node I Node 2

Training Class 2
R3197TR btmp3028.dat 0.1616 0.0887 0.9111
R3197TRbtmp_3083.dat 0.1624 0.0887 0.9111
R3190p22 lbtmp_3090.dat 0.1326 0.0777 0.9223
R3l90 p221-btmp3083.dat 0.1117* 0.0866 0.9133
R3190_p 165_btmp-3090.dat 0.0827* 0.0887 0.9111
R3190_pl 65_btmp_3083.dat 0.1254 0.0051 0.9952
R3051Lbtmp 3195.dat 0.1514 0.0885 0.9113
R305 l-btmp_3083.dat 0.1289 0.0887 0.9111
R3090_- btmp_3083.dat 0.1106* 0.0879 0.9119
R3090_btmp_3195.dat 0.1268 0.0858 0.9141
R3033 -btmp_3028.dat 0.0712* 0.0365 0.9613
R3033_btmp_3195.dat 0.1410 0.0892 0.9106
R3028_RiObtmp_3195.dat 0.1278 0.0964 0.9037

C R3066_btmp_3195.dat 0.1398 0.0887 0.9111
R3066_btmp_3083.dat 0.1494 0.0892 0.9106
R3074_btmp_3195.dat 0.1398 0.0887 0.9111
R3074_btmp_3090.dat 0.0838* 0.0039 0.9963
R3088 btmp3195.dat 0.1421 0.0886 0.9112
R3088_btmp_3083.dat 0.1097* 0.0428 0.9557
R3083_rIO _btnp_3195.dat 0.1343 0.0887 0.9111

* R3083_r IObtmp_3028.dat 0.1133* 0.0050 0.9952
R3195_riObtmp_3028.dat 0.0942* 0.0039 0.9963
R3042 btmp_3195.dat 0.1352 0.0909 0.9091
R3042 btmp 3090.dat 0.1167* 0.0063 0.9940

* Represents a misclassification at a threshold of 0.125
* (Note: The ability of a neural net to train and seperate very poorly distributed

data is outstanding. The key to classifying test data, is to insure the training
data is a good representation of all the data. Same baisc results as with the range data.)

t

.1

A

hG 6-31

Table 6.23
Classification Results for Class 1 Set 3 Binary Test Data

(Note: Distances are calculated from the center of the class I training data.)

File Name Distance Neural Net
Node I Node 2

Test Class I
R3190_btmp_3083.dat 0.1326* 0.0884 0.9114*
R3088_btmp_3090.dat 0.1392* 0.0889 0.9109*
R3035_btmp_3083.dat 0.1190 0.9994 0.0005
R3066_btmp_3090.dat 0.0774 0.9983 0.0014
R3190_p47_btmp_3195.dat 0.1559* 0.0886 0.9112*
R3197TRr40_btmp_3195.dat 0.1465* 0.0887 0.9111*
R3195TANK-btmp_3083.dat 0.1013 0.9441! 0.0617
R3195TANKr40 btmp_3083.dat 0.1441 * 0.9998 0.0002

* R3090_r30_btmp-3028.dat 0.1093 0.9951 0.0041
R3090_r20_btmp-3028.dat 0.1001 0.8536 0.1612
R3090_r Obtmp_3028.dat 0.0897 0.9981 0.0016
R3033_r30_btmp_3083.dat 0.1247 0.0813 0.9187*
R3033_r20_btmp_3083.dat 0.1287* 0.0990 0.9013*
R3028_rI Obtmp_3028.dat 0.1095 0.9939 0.0051r R3028_r20_btmp_3028.dat 0.1174 0.9916 0.0067
R3028_r30_btmp_3028.dat 0.0987 0.9927 0.0059
R3066_r1O_btmp_3066.dat 0.0635 0.9937 0.0052
R3066_r20_btmp_3066.dat 0.1049 0.9939 0.0051
R3066_r30 btmp_3066.dat 0.1076 0.9939 0.0051
R3074_r1Obtmp_3074.dat 0.0542 0.0192 0.9813*

• R3074_r20_btmp_3074.dat 0.0387 0.9911 0.0074
R3074_r30_btmp_3074.dat 0.0540 0.9763 0.0216
R3088_rObtmp_3088.dat 0.0777 0.5200** 0.4432
R3088_r20_btmp_3088.dat 0.0748 0.9939 0.0051
R3088_r30_btmp_3088.dat 0.0769 0.9939 0.0051
R3083_r Obtmp_3083.dat 0.0484 0.9975 0.0021

* R3083_r20_btmp_3083.dat 0.0485 0.9955 0.0037
R3083_r30_btmp_3083.dat 0.0504 0.9954 0.0038
R3195_riO_btmp_3195.dat 0.0641 0.9971 0.0024
R3195_r20_btmp_3195.dat 0.0667 0.9978 0.0018
R3195_r30_btmp-3195.dat 0.0658 0.9984 0.0013
R3042_riO_btmp_3042.dat 0.0553 0.9730 0.0240
R3042_r20_btmp_3042.dat 0.0629 0.9902 0.0077
R3042 r30 btmp_3042.dat 0.0551 0.9933 0.0055

• Represents a misclassification
•* Represents a nonclassification

(Note: All the neural net misclassifications are in the same target-different view
autocorrelation class. See note below Table 6.22. Same basic results as with the range data.)

6-32

.........................

Table 6.24
Classification Results for Class 2 Set 3 Binary Test Data

(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
Node I Node 2

Test Class 2
R3195TANKbtmp_3028.dat 0.1557 0.0887 0.9111
R3195TANKbtmp_3195.dat 0.1213* 0.0076 0.9926
R3197TRbtmp_3090.dat 0.1632 0.0887 0.9111
R3197TRbtmp_3083.dat 0.1624 0.0887 0.9111
R3190_p47_btmp_3090.dat 0.1281 0.8735* 0.1453
R3190_p47_btmp_3083.dat 0.0826* 0.9697* 0.0290
R3190_T227_btmp_3090.dat 0.0984* 0.0121 0.9882
R3190_T227_btmp_3195.dat 0.1449 0.0886 0.9112

* R3035_btmp_3090.dat 0.1370 0.0039 0.9963
R3035_btmp-3195.dat 0.1320 0.0174 0.9831
R3090_r Obtmp_3083.dat 0.1294 0.9850* 0.0192
R3090_r Obtmp_3195.dat 0.1188* 0.1523 0.8483
R3090_r20_btmp_3083.dat 0.1215* 0.0882 0.9116
R3090 _r30_btmp_3083.dat 0.1072* 0.1105 0.8900
R3090_r20_btmp_3195.dat 0.1241 * 0.0988 0.9014
R3090_r30_btmp_3195.dat 0.1169* 0.0883 0.9115
R3033_r20_btmp_3028.dat 0.1545 0.0039 0.9963
R3033_r30_btmp_3028.dat 0.0863* 0.9735* 0.0221
R3033_r20_btmp_3195.dat 0.1323 0.0883 0.9115
R3033_r30_btmp-3195.dat 0.1528 0.0887 0.9111

V R3028_r40_btmp_3l95.dat 0.1440 0.0887 0.9111
R3066_r4.0_btmp_3195.dat 0.1498 0.0887 0.9111
R3066_r20_btmp_3195.dat 0.1472 0.0887 0.9111
R3066_r40_btmp_3083.dat 0.1356 0.0887 0.9111
R3066_r20_btmp_3083.dat 0.1060* 0.9968* 0.0037
R3074 r40_btmp_3195.dat 0.1426 0.0887 0.9111
R3074_r20_btmp_3195.dat 0.1228* 0.1061 0.8943
R3074_r40_btmp_3090.dat 0.1202* 0.0042 0.9960
R3074_r20_btmp_3090.dat 0.1245* 0.0887 0.9111
R3088_r20_btmp_3195.dat 0.1424 0.0887 0.9111
R3088_r40_btmp_3195.dat 0.1406 0.0886 0.9112
R3088_r20_btmp_3083.dat 0.1071 * 0.9790* 0.0213
R3088_r40_btmp_3083.dat 0.0912* 0.9847* 0.0145
R3042_r20_btmp_3090.dat 0.0934* 0.0880 0.9118
R3042_r40_btmp_3090.dat 0.0914* 0.0131 0.9869
R3042_r20btmp_3195.dat 0.1378 0.0877 0.9121
R3042_r40 btmp_3195.dat 0.1336 0.0883 0.9115
R3083_r20_btmp_3195.dat 0.1421 0.0909 0.9091
R3083_r40_btmp_3195.dat 0.1423 0.0887 0.9111
R3083_r20 btmp_3028.dat 0.1216* 0.0887 0.9111
R3083 r40_btmp_3028.dat 0.1175* 0.0885 0.9113
R3195 r40 btmp_3028.dat 0.1067* 0.4113 0.6000**

* Represents a misclassification
•* Represents a nonclassification

6-33

li~

VII. Conclusions and Recommendations

7.1 Conclusions

This thesis examined methods of classifying and locating both segmented and non-

segmented targets using laser range and binary data. The classification methods

included applying both standard distance measurements and a neural network to the

peak of a PSRI space correlation. The experimental results on these methods demon-

strated that a trainable neural network has distinct advantages over distance measure-

ments, both in absolute classification rates and in the figure of merit area. The study with

the multilayer perceptron also demonstrated that these are not magical devices. Care

must be taken to provide the network with an adequate representation of the data if

-. satisfactory classification results are to be obtained. In a real world situation, many

more training files would be needed to ensure proper classification. However, the suc-

cessful results demonstrated in this thesis indicate that this may be a classification alter-

native worth pursuing.

This study indicates that with the chosen features and methods of classification, the

relative range information did not provide any extra useful information about the target.

* Again, as stated in chapter VI, this does not mean that the information isn't avaiable,
40

only that the chosen features and classification method didn't make use of this informa-

tion. It could also mean that the extra information wasn't required. The classification

rates in sets one and two using the neural network were near 100% for both binary and

6 range data. Extra information can't be deemed useful if it isn't needed. In set three, the

classification rate was much less, particularly with the same class - different view auto-

correlations. However, this was most likely due to the limited number of training files

* of this type used. The success achieved with the set three training files gives hope that a

larger training set could yield better classification results.

K The other area explored was that of the space domain Goodman - Schwarz correla-

tion. The theory of this correlation indicated that through a process of local normaliza-

- 7-1

tion, the peak in the correlation plane will correspond to where the input scene best

numerically matched the template.

The test case for this experiment worked well with the peak in the correlation plane

properly locating the target with two of the three templates tested. It was determined

that for this test case, a threshold of 98% of the maximum could be used as a threshold

for the purpose of classification. However, a more extensive study is needed to deter-

mine some type of universal threshold. A multistage process was used to greatly reduce

the computation time required. This multistage process also allowed for locating par-

tially occluded targets. This process was found to work well on the larger targets but

not on the small target. Again, more study is needed to determine size limitations. The

Goodman - Schwarz correlation could be set up in a parallel architecture just as the

basic correlation could, but, it would be a massive undertaking. The highlight of the

Goodman - Schwarz correlation is that it works through a local energy normalization

operation. Local normalization is essential in locating a target with this type of input

data where large amounts of noise are distributed throughout the scene.

7.2 Recommendations

* Many possibilities exist for further study. A larger number of correlations could be

obtained to further test the application with neural networks. A way to create scaled

versions of range images would be useful for creating training fles. A determination

f. needs to be made as to how scale and rotation invariant this algorithm is with respect to

classification. This researcher strongly believes that the PSRI space is much more rota-

tion invariant than scale invariant with respect to classification. However, this thesis is

certainly not presented as a proof of this statement. A frequency filter was used when

mapping the magnitude Fourier transform to the (Ln r , 0) coordinate system. More

study is needed to determine an optimum filter. As a side note, if many more PSRI

space correlations are to be performed using the Kobel and Martin Executive program

[1 :Vol 111, one of the first items that should be accomplished is to modify the way the

(D 7-2

data is stored. The present program requires too much memory. Certainly one possibil-

ity is too extract the peak without saving the correlation plane.

The files used with the neural network contained raw data taken from the correla-

tion peaks. During the network operations, each file was normalized prior to processing

by the net. In the training phase, a single file is then read and normalized each time it is

used. This is extremely inefficient and takes approximately 30 minutes of cpu time, on

a Micro Vlx, for 1000 training file iterations using 100 nodes in the first hidden layer

--nd 3 nodes in the second hidden layer. Once the desired form the data is known, files

should be created that contain only this data before being processed by the neural net-

work. This thesis only explored one of a large number of neural networks. Other types

may be explored and may be found to yield superior results.

Mike Mayo, a fellow AFRT student, has demonstrated the optical transformation of

a template into the PSRI feature space and the subsequent correlation of the PSRI spaces

40 [16]. Therefore, a very exciting problem that could be immediately attacked would be

to implement a hybrid optical/digital electronic system that could perform classification

with a neural network using these correlation peaks. Because of time constraints, the

optical transformation is essential in a real world application.

7-3

.e

Appendix A. Neural Networks

The recent rediscovery of neural networks is due to new net topologies and algo-

rithms. Also, the extensive calculations required for speech and pattern recognition

have a great advantage in the parallel architecture of neural networks. The neural net-

work used in this study was a multilayer perceptron which makes use of a backward

error propagation routine. A complete description of this network can be found in a

very good tutorial format article by Lippmann [22]. Conceptually, a multilayer percep-

tron is constructed as in fig. A. 1. The input to the network is the set of features that are

to be used for classification and the output becomes the class in which the features are

grouped. Connection weights and node thresholds are initially chosen to be small ran-

dom numbers and are updated during the training phase using the backward error propa-C-
gation routine.

During the training phase, the net processes many examples of the classes that are

desired to be classified. The weights and thresholds of the net are forming decision

regions in an N dimensional space where N is the number of input features. The

weights and internal thresholds are updated with the backward error propagation routine

that updates values based on the actual values as compared to the desired output values.

The backward error propagation routine makes the decision regions better accommodate

the input data. Once the training is complete, the hope is that new data from the classes

will also fall into the proper decision region, therefore being classified. This is very

simplified and much more detail can be found in Lippmann [22]. There are, however, a

few items that need to be stressed from or added to Lippmann.

First, the selection of the number of internal nodes. Lippmann states that in the

second hidden layer, each node will identify a decision region [22:16]. Therefore, if

there are only two decision regions, the output node can do the identification and there is

no need for the second hidden layer. If the net is presented with a 2 class problem and

each class is separated into 3 regions, then there needs to be at least 6 nodes in the

(, A-I

OVPUT (CLASSES)

2 3 ... P

THIRD
LAYER

W M

SECOND
LAYER

w
jk

* FIRST
LAYER

w.j

S1 2 3 ... N

INPUT (FEATU)RES)

Fig. A. I Conceptual Diagram of a Multilayer Perceptron

second hidden layer. Don't make the "the more nodes the better" mistake. At most,

* there need only be the same amount of regions as training examples. For the first hidden

layer, Lippmann states that one node is needed for every boundary plane of each deci-

sion region. The boundary planes he is speaking of are really N-1 dimensional units.

He therefore states the need for at least three times as many nodes in the first hidden

layer as in the second hidden layer [22:16]. This is true if the data has been normalized

so as to fall onto the surface of a hypersphere. If the data occupies the volume of the

hypersphere, and it's necessary to completely enclose the decision region, there needs to

be at least N+l number of nodes for every region. For the case where there is no insight

as to the distribution of the decision region, the following sequence is suggested:

1) Start training with two nodes in the second hidden layer and 2*(N+l) nodes in the
first hidden layer.

A-2

2) Gradually increase the number of second bidden layer nodes (K) and first hidden
layer nodes K*(N+l) until training is successful.

0 3) Hold the second hidden layer at the node number where successful training was
achieved. Decrease the number of first hidden layer nodes to determine number
required for separation.

This process was found to yield good groupings of the decision regions. It is possi-

6 ble that data could be grouped in a volume such that more than K*(N+l) nodes are

required in the first hidden layer particularly when working in a lower dimensional

feature space. In this case, step 2 will never be successful. Therefore, it may be neces-

40 sary to find where step 2 was most successful and then start increasing the number of

second hidden layer nodes.

It would be ideal if there was an infinite set of data to train the net with. The net

could train on all possible views of a object and when training was successful, success-

ful classification with any possible test data would be assured. With pattern recognition,

the game is to train with a finite set of training data and then test with different data not

included in the training set. The training sets are presented to the net in a random order

so that the net can make as many training runs as needed. A problem with this is that

the training set may not be a good representation of all the data. T'here have been

0 attempts to quantify the required number of training sets per class needed to properly

train the net, but this is very application dependent. For example, four training sets for a

class would be enough if all the test data for that class fell within the region that would

be bounded by the four training examples.

It can sometimes be hard to determine when to stop training and say that the net is

not going to separate. The net is being trained to drive the correct output nodes to a

6 value of one and drive the incorrect output nodes to zero. When a particular training file

stabilizes at output values between 0.3 and 0.7, the chosen number of nodes is not going

to separate the data. If the values are in this region but still flopping around a great deal,

the net needs to train for a longer period. This also gets into a figure of merit question.

6 A-3

If the input data is classified based on the maximum output node, when can the decision

of the net be trusted? In Lippmann's use of a multilayer perceptron with a sigmoidal

type output rule, he used values of > 0.9 to indicate a definite true and values of < 0.1 to

indicate a definite false [22:17]. This, of coarse, is fairly arbitrary and could be changed

depending on the application.

Another factor that was critical to the successful net training was the selection of

the initial weights and thresholds. At first these were all chosen from a random distribu-

tion centered at zero with a radius of 0.1. The resulting net failed miserably. When the

radius was increased to 0.5, the net could successfully be trained. No exhaustive effort

was made to logically explain this effect and it is offered only to possibly help someone

else working in a similar area. It could have a sound mathematical basis or may be due

to computer errors involved with many multiplications, additions, and subtractions with

small numbers.

A final step is the preprocessing of the input data before sending it into the net.

The inputs to the net were the 49 normalized components around the peak of the PSRI

feature space correlation. Even though the resulting 49 dimensional hypersphere has an

enormous surface area, the decision regions were greatly restricted due to using only
0

positive inputs. With only positive inputs, the surface area is restricted to only one sec-

tor or Iof the possible area. Also, since all correlations have generally similar

shapes around the peak, with a peak and a roll off from the peak, it's reasonable to

assume that all the data would cluster into a relatively small area of this one sector. It

appears that these groupings required too fine of a detail for the net to adequately

separate. Therefore, the normalized input data was preprocessed to spread the data to

fully occupy a unit hypercube. This greatly increases the separation between points and

leads to much improved classification. The method is to first search all the components

* of the training data and find the minimum and maximum value for each component.

The minimum value for each component is now set to zero and the maximum value is

A-4

set to one. The rest of the data is then spread in proportion to the original spread of the

data [23]. This spreading operation did not yield better groupings with respect to dis-
S

tance measurements, but, it allowed for regions to be constructed using the neural net-

work.

0

A-5

Appendix B. Computer Programs

The following is a listing of the computer programs that were written in support of

this thesis effort. They include a complete listing for the multilyer perceptron, the peak

extractor used to find and extract the peak of the PSRI space correlation, and a listing for

the Goodman - Schwarz space domain correlation. These programs are all written in the

VAX ADA programing language.

,;

B-I

I'i

-- * PROGRAM TITLE : NP *

-- *AUTHORS LT STEVE TROXEL *

O -- * CAPT DENNIS RUCK,,

-- DISCRIPTION : This program implements a multilayer *

-- * perceptron to perform classification. *

-- • INPUTS : NUMBER OF NODES IN EACH LAYER *
-- * NUMBER OF INPUTS

S-- •NUMBER OF CLASSES *

-- * GAIN, GAIN DECAY AND MOMENTUM VALUES *

-- * COST THRESHOLD *

-- * TRAINING AND TEST FILES *

-- • OUTPUT : CLASSIFICATION VALUES FOR BOTH THE *

-- * TRAINING AND TEST FILES *

-- .. ENDING WEIGHTS AND THRESHOLDS *

with text io; use text io;

with integer text io; use integer text io;

with float text io; use float text io;

with vector operations; use vector operations;

with perceptronsupport; use perceptron support;
with math lib extension; use math lib extension;

with float math lib; use floatmath lib;

with system;

procedure MP is

type layer (inputs : positive; outputs : positive is
record

X vector (1..inputs); -- input to layer
W matrix (1..inputs, l..outputs); -- current weights
W old : matrix II. inputs, 1..outputs); -- previous weights

Xp vector (l..outputs); -- input to a node
theta : vector (l..outputs); -- current node threshold

thetaold : vector (l..outputs); -- previous node threshold

Y vector (l..outputs); -- output of layer
del : vector (l..outputs); -- relative change in

end record; -- weights and thresholds

0 N : integer; -- number of features
K : integer; -- nodes in Layer 1
L ; integer; -- nodes in Layer 2

M : integer; -- number of classes
nun : integer; -- number of training files
file list string(l..80); -- name of file containing list

-- of files

cost : FLOAT;

total cost ; FLOAT;

cost threshold : FLOAT;

output_interval: natural;

count natural;

center : constant :- 0.0;

width : float;

seed : system.unaigned longword :- 1;

Int file : Text io.file-type;

trainingcount : positive;

Seta decay : FLOAT;

initial-eta : FLOAT;

9-2

eta FLOAT;
alpha FLOAT;
correct float;
last natural;

begin -- MAIN

-- (0] Get parameters from operator

-- cost-threshold relative change in weights and theta values
-- determines when to stop training
-- initial eta gain value
-- alpha momentum value
-- file list file name that contains complete list of
-- files to work with. contains first, all the
-- training files and then all the test files
-- output interval specifies the number of training iterations

-- between each system test
S-- width desired distribution radius of initial weights

new line;
putT"Enter cost threshold (float) "); get (cost_threshold); skip_line;
new line;
putT-Enter INITIAL ETA (float) "); get (initial_eta); skipline;
new line;
putT"Enter ETA DECAY (float) "); get (eta decay); skipline;
new line;
putT"Enter ALPHA (float) "); get (alpha); skip_line;
new line;
putT"Enter width of distributions (float) "); get(width); skipline;
new line;
putT'Enter the number of Layer 1 nodes (K) (Int) '); get(K); skip_line;
new line;
put("Enter the number of Layer 2 nodes (L) (Int) "); get(L); skip_line;
new line;

put--"Enter the number of input features (N) (Int) '); get(N); skipline;
new line;
put-"Enter the number of output classes (K) (Int)); get(M); skipline;
new line;
put-"Enter the file list name ... ");getline(file_list,last);
new line;
put--Enter the number of training files ... ");get(num);skip_line;
new line;

* put-"Enter the output interval... ");get(output interval);skipline;

Create (File I nt file, -- if quit.test is deleted from the
Mode u out file, -- directory during program execution
Name = "Quit.test"); -- the current weights and thresholds

Close (lIntfile); -- will be written to a file without

C

-- halting execution

-- declare the network layer variables
declare

LI layer (N, K);
L2 layer (K, L);
L3 layer (L, X I;
D out vector (l..M }; -- desired output
AO vector (l..M); -- actual output

X center vector 1 l ,. N); -- center of input training components

X-width vector I . N); -- distribution width of each component

procedure compute output is

3-3

II

begin

Ll.Xp :-Ll.X*Ll.W;
* L1.Y :.sigmoid (Ll.Xp-Ll.theta

L2.X :-Ll.Y;

L2.Xp :=L2.X*L2.W;
L2.Y :=siguoid (L2.Xp-L2.theta 1
WA. : L2.Y;

L3.Xp :-L3.X*L3.W;
* L3.Y :- igmoid (L3.Xp-L3.theta

end compute-output;

procedure test-data (x -contor,x width in vector;
- file -list in string;

last in natural;
!gM in integer)is

correct integer :-0;
class integer
last2 natural;
rowl,coll integer;
Int file Text -io.file_type;
Int file? Text io.file_type;
file-name strinig(l. .80);

*storage_array :array(l. .21,1. .21)of float;
x-count integer :- 1;
d size integer;
sun float :- 0.0;
x vector(l. .1);
D-out vector(l. .M);
AO vector(l. .M);

-this procedure requires the input files to be in a specific format.
-the first record contains the class
-remaining records are in a row, column, value format
-for a complete 21 x 21 array.
-the values are not normalized and not spread
-input data is therefore read in, normalized and spread
-before any additional computations are accomplished

begin

open (file I mt file,
mode* in-'file,
name a> iels~l.atl

while not end of filefint file) loop
oout :- (others a) 0.06);

x count :- 1:
get line(int file,file namelIast2);
openi (file Z) It -file?,

mode in ifile,
nameoa file name(l..last2l);

qet(Tnt-file2,claas);

For row in 1 . .21 loop
for col in I .. 21 loop

g qt(!nt fl2rw)
got(Int-fil*2,coll);

9-4

get(Int file2,Integer(Storage array(row,col)));
end loop;

end loop;

* close (Int-file2);

-normalize by deviding each point by the square root of the
-sun of the squares of the desired number of input points

dasize :- integer(sqrt(float(N)))/2;
For tow in 11 - d size .. 11 + d -size loop

For col in 11 - d size . 11 + d -size loop
sun :-sum + storage array(row,coI)**2;

end loop;
end loop:

sum :- sqrt(suu);

-spread the normalized input data

For row in 11 - d size .. 11 + d size loop
0For c ol in 11 d size . . 11 +. d size loop

Ll.x(x-count) :Z (storage-srray(row,col)/sum - conter(x count))/
x width(x count) + 0.5;

x Icount :=x count + 1;
end Toop;

end loop;

D_out (class) :=1.0;
compute output;
AO :- find-maxIL3.Y);

new line;
for] in L3.Ylrange loop

put (13.y(j) 4,4,*0);
end loop;

if D outc; AO - 1,. thenlcorrec :0 orret .1--correct is based on the correct

end if; - node having the largest value

*end l oop;

new-line;

put("Correct -);put(correct,6);
now line:

cloae(int file):
end test-'data;

begin -- DECLARE block

-find the centers and width distributiona of the

-individual components of the training data

Get -norm -values(x-center,x-width,file list,last,N,num);

-- [I] Initialize weights and thresholds for each layer

for j in LI.V'range(2) loop
for L in Ll.W'range(l) loop
uniform (center, width, seed, Ll.W(i,j))

end loop;
uniform Ccenter, width, seed, Ll.theta(j();

end loop;
*Ll.W old Ll.W

8-5

% % ~

for~tU~ j inL.- .n*)lo

for j in L2.Wrang() loop

uniform I center, width, seed, L2.W(i,j) C
* end loop;

uniform Ccenter, width, seed, L2.theta(j) C
end loop:
L2.W old :.L2.W;
L2.theta-old :- L2.theta;

for j in L3.W'rango(2) loop
for i in L3.W'rango(lC loop
uniform (center, width, seed, L3.W(i,)C

co end loop;
uniform (center, width, seed, L3.thota~il C

end loop:
L3.W old L3.W;
L3.theta-old :- L3.theta;

-- training loop

total cost :- cost threshold + 1.0;
count :- 0;
while total-cost > cost-threshold loop

eta :- initial_eta * expl -eta-decay *FLOAT(count) C

-- (2)] Get input data

get_input_data (Ll.X,D-out,x_center,x width,num,N,file-list,last,aeed C

-13] : Compute Network output

Compute-output;

-- (4) Update network weights

L3.del :-output del I L3.Y, D out C
update weights (L3.W, L3.W-olda, L3.dol, L3.X, eta, alpha, coat C
total czost :- cost;

L2.del :- internal del (L2.Y, L3.W, L3.del C
update weights (L2.W, L2.w old, L2.del, L2.x, eta, alpha, cost C
total-cs :- total-cost + cost;

Ll.del :- internal del (Ll.Y, L2.W, L2.del C
update weights (I.W, Ll.W old, LI.del, Ll.X, eta, alpha, coat C
total-cost :u total-cost + coat;

-(4a] Update the network thresholds
-- threshold values of output layer are not updated

update thresholds (L2.theta, L2.theta old, L2.del, eta, alpha, cost C
total cost :W total cost + cost;
update thresholds CLl.theta, Lltheta-old, Ll.del, eta, alpha, cost C
total-cost :0 total-cost + coat;

I C begin -- ex-eption block

if count mod output_interval - 0 then
new line;
putT-Total coat - ;put(total_coat,0,4,O); new lines;
put (count ,aS ;
test data~x center,x width,file list,last,N,MC;
open (File Z) It file, -- f quittest has been deleted

mld -) out file. -- a name error exception is raised
name w> 'Qult.test'C;

G-

close (mnt tile):(end if;

count :- count + 1;
* EXCEPTI ON

When Name-Error
save-resulta(Ll theta,L2.theta,L3.theta,

x center,x width,Ll.W,L2.W,L3.W);
Create (File Z> Int fife,

mode .>out file,
Naneo- "Qut.test");

Close (Int tile);
count :. count + 1:

end; -- exception block
end loop; -- training loop

put("final count - "); put(count,4t; now linn:
save-results (Ll theta, L2.theta, L3.theta,

x-conter,x-vidth,Ll.W,L2.W,L3.W);

* end; -- declare block

end up;

J

*8-7

111 il

-- *PACKAGE TITLE :PERCEPTRONSUPPORT

-- * AUTHORS :LT STEVE TROXEL
* -- * CAPT DENNIS RUCK

-- *DISCRIPTION This package contains the support *

-- * necessary to run HP

-- INPUTS Procedure Dependent

-- *OUTPTr Procedure Dependent

with vector operations; use vector -operations;
with ma~h lib extension; use math lib extension;
with floatE matFh lib; use, float math lib;
with float text io; use float text io;

* ith integer text-io; use integer-text-io;
with text io; uetx o
with system;

package perceptron-support is

function siqnoid (input :vector) return vector;

qW function output-del C Y, D out :vector)return vector;

function internal del (Y vector;
W matrix;
next del vector I return vector;

procedure update-weights C W in out matrix;
W old in out matrix;
del vector;.1X vector;
eta FLOAT;
alpha FLOAT;
cost out FLOAT)

function find-max (X :vector) return vector;

procedure get-nora values Cx center, x width in out vector;
file-list in string;

*last in natural;
N in integer;
nun in integer);

procedure get input-data I X, D out :out vector;
X center,x width :in vector;
numN :in integer;
file list in string;

*last in natural;
seed :in out systemunsignd_longword)

pr',7*duro save results(thetaItheta ?,theta_3,x-center,x .width :in vector;
W_l,W_2,W 3 ,-in matrix)

lb

,-.4u.re jpdate-_thresholds C theta in out vector;
theta old in out vector;
del vector;

eta FLOAT;
* alph, FLOAT,

cost out FLOAT)

46-

end perceptron support;

S package body perceptron_support is

function sigmoid C input : vector) return vector is

output : vector { input'range);

-- This function inplements the signoid function
-- used in the output calculation

begin

for i in input'range loop
begin
output(i) :0 1.0/(l.O+exp(-input(i)));

exception
when FLOOVEMAT -) output(i) :- 0.0;

end;
• end loop;

return output;

end sigmoid;

function outputdel (Y, D out : vector) return vector is

del : vector (Y'range);

begin

for i in Y'range loop
del (i) := Y(i)*(1.0-Y(i))*(Dout(i)-Y(i));

end loop;

return del;

end outputdel;

function internal del (Y vector;
W matrix;
next del vector) return vector is

del vector (Y'range);
W slice vector (Wrange(2) C;

begin

for j in del'range loop

for k in W slice'range loop
W slice Tk} :- W(j,k);

end-loop;
del (j) :. Y(j)*(1.0-Y(j))C(next del*W-slice):

• end loop;

return del;

end internal del;

function find max (I : vector) return vector is

• max FLOAT : 0.0;
max index integer :- X'first;

W-9

q74

output vector (XIrange) :a (others -> 0.0);

(begin
* for i in X'range loop

if X(i) > max then
max :- X(i);
max index :- i;

end if;
end loop;

output(maxindex) :- 1.0;

0q return output;

end find max;

procedure get norm values (x center, x width in out vector;
tile list in string;
last in natural;
N in integer;
Num in integer) is

x men vector(1 .. N) :- (others => 1.0);
x max : voctoril .. N) :- (others 0.0):
class : integer;
last sub : natural:
rowlcoll integer:
Int file : Text io.filo type;
Int-filo2 Text-io.filetype;
fil, name string(l..80);
storagearray : array(l..21,1..21)of float;
x count integer := 1;
d-size : integer;
sum float :- 0.0;

-- This procedure finds the center and width of the distribution
-- of each component in the input data. This procedure is written
-- for the specific file format used in this thesis and would
-- need modification for different file structure.

begin -- get norm values

open (file - nt file,
mode * in -ile,

name - file list(l..last));

ffor 3 in 1 .. Num loop
getline(int filefilenamelast sub);

open (file -> Int file2,
mode - in 'ile,
name - fiTo name(l..last_sub)):

get(Int _file2,class);

C For row in 1 ..21 loop

for col in 1 .. 21 loop
qet(Znt file2,rowl):
et(Xnt file2,coll):

*et(Int fsle2,Integer(Storagearray(row,col)));
end loop;

end loop;

*close (Int filo2j:

3-10

dcsise :- integer(sqrt(float(N)))/2;

For row in 11 - d size .. 11 + d size loop
For col in 1 -- d nine .. 11 T d size loop

sum :. sum + storage array(row,col)**2;

end loop;
end loop;

sum :- sqrt(sum);

-- Normalise the data

For row in 11 - d size .. 11 + d size loop

For col in 11 = d site .. 11 T d size loop

storagearray(row,col) :- storage_array(row,col)/sum;
end loop;

end loop;

x count :- 1;

-- Find max and mi values for each component

For row in 11 - d size .. 11 + d size loop

For col in 11 7 d size .. 11 d sin* loop
If storagearray(row,col) x-min(x count) then

x min(x count) :- storage array(rov,col);

end If; -

If storagearray(row,col) > x max(x count) then
x max(x count) :u storage _array(row,col);

end if;

x count :- x count + 1;

end Toop;
end loop;

end loop;

C_ compute center and width of distribution

0 For j in x uax'range loop

x widthTj) :. x max(j) - x min(j);
x center(j) =- xwidth(j) 7 2.0 + x.min(j);

end loop;

close (int file):
end get norm-values;

procedure get_inputdata (X, D out : out vector;
x center,x width : in vector;

nUaN in integer;
file list : in string;
last : in natural;
seed : in out system.unsigned longword) is

class integer;

pick float;
last sub : natural;
rowlcoll integer;
Int file Text io.file type:

file name atring(l..80);
storage array : array(l..21,1..21)of float;

x count integer :- 1:

d-sise integer;
sum float :- 0.0;

B-Il

-- This procedure reads in the input data and performs the
-- preprocessing necessary to send data to the actual perceptron.
-- This procedure is written for the specific file format used
-- in this thesis and would need modification for different file structure.

S
begin

D out :- (others -= 0.0);
open (file > Int file,

mode - in file,
name = filelist(l..laat)):

S-- Compute which training file to read

mth random(pick,seed);
pic'k :- pick * float(num) - 0.499;

if pick > float(num) - 0.5 then
pick :- float(num - 1);

end if;

*for j in 0 .. integeripick) loop
get_line(Intfilefilename,lastsub);

end loop:

closo(Int file);

open (file -> Int file,
mode) in jile,

Wname a) filo name(l..last sub)):
get(Intfile,class);

For row in 1 ..21 loop
for col in 1 .. 21 loop

get(lnt file,rowl):
get(Int file,coll);
get(Int~file,Integer(Storagearray(row,col)));

end loop;
end loop:

*close (Int file);

d-size :- inteqer(sqrt(flost(N)))/2;

-- Normalize and spread the data to a unit hypercube

For row in 11 - d size .. 11 + d size loop
For col in 11 7d size .. 11 T d size loop

sum :a sum + storsgearry(rowol)*2;
end loop;

end loop;

sum :- sqrtisum);

For row in 11 - d size .. 11 + d size loop
For col in 11 - d size .. 11 '; d size loop

_(x count} :- TstorageArray(row,col)/sum x_center(x count})/
-- x width(x.count) + O.S;

z count : z count + 1;
end Toop;

end loop:

V out (class) :- 1.0;

end 9etinput data;

procedure seve resulte(thetal,theta2,theta_3,x center,xwidth in vector;

3-12

6

W-l,W_2,W 3 :in matrix) is

T is t_file Text_io.file-type;

Thi procedure saves the weights, thet& values, and
training component distributions of the network.
This procedure is called when the up program is

-terminated by the cost function falling below threshold
-or whenever the operator desires via the deletion of the
-- Quit.teut file.

begin -- save results

Create (file -> Int file,
mode*> out file,'

j i nae - X c nt r .dat-);

for j nxcenterlrange loop
put(Intfile,x center(jfl;
new lin*(int f-3e);

end loop;-

Close (mnt-file);

Create (file - t mtfile,
mode -out file,
nameo= "x v;idth.dat");

for j in x width'range loop
put(Int file,x width(j)l;(new-line(int-60

end loop;

Close (Int file);

Create (file - mt file,
mode* out file 'name ")Ll-thsta.dat-);

* for j in theta_ilrange loop
put(Int_filethetaT1(j));
new -line(int file);-

end loop;

Close (Int-file);

Create (file - mt file,
mode -out file,
name I)L2-thet;.dat-);

for j in theta_2,range loop

new -line(int filo);
end loop;-

Close (Int-file);

Create (file In t file,
made -out file,
name 10 Lthet;.dati);

for j in thata Prange loop
* ptt(nt fIle,theta_3(j)):

13-13

end loop;

(Close (Int-file);

Creste (file) mnt-tile,

msode -> out file,
name w) "Ll-W.dat");

for j in W l'ranqe(l) loop
for k in W l'range(2) loop

put(Int file,W l(j,k));
new -lizn.(Int-file);

end loop;
end loop;

close (int file);

Create (file -> mnt file,
mode a> out file,
name a> "L2_W.dat");

for j in W 2'range(l) loop
for k inW_2'range(2) loop

put(int file,w -2(j,k));

new lin.)Int-file);
end loop;

end loop;

close (mnt-file);

create (file -> It file,
mode ~>out file,
name - L3W.dat");

for j in W 3'ranqe*(l) loop
for k in W 3'range(2) loop

putlInttfilo,W 3(j,k));

* New lin.)mnt file);
end loop; -

end loop;

close (Int file);
end save-results;

procedure update-weights W in out matrix;
w old in out matrix;
del vector;
X vector;
eta FLOAT;
al,ha FLOAT;

Cosit out FLOAT)is

temp FLOAT;
cost sum FLOAT :s0.0;

C begin

for j in V'ranq*(2(looP
for Ji n W'rangell) loop

temp, :0 Vi,j);

W Old i,j) := tamp;
cost sum :. coat sum + ASS((V(i,j)-W old~i,j))/W(i,l))

* eand lop;
end loop;

11-14

C,

(dcost :- cost-sUm;

end update weights:

procedure update thresholds (theta in out vector;
theta old in out vector;
del vector;

Seta : FLOAT;
alpha FLOAT;

cost out FLOAT) is

temp FLOAT;
cost sum FLOAT :- 0.0;

* t_j integer;

begin

for j in theta'range loop
t_ : j
tomp :- theta(j);
theta (j) :- theta(j) + eta'del(j) + alpha*(theta(j)-thetaold(j));

theta old(j) :- temp;
cost sum :- cost sum + ABS((theta(j)-thetaold(j))/theta(j));

end loop;

cost :. costsum;

exception

* O (when NUMERIC ERROR -,
put line("UPDATE THRESHOLDS : NUMERIC ERROR info follows:*);

putT"Index J - "T: put(t j,3); put(",- THETA(J) = ');
put(theta(tj),0,4,0); put(", DEL(J) - "); put(del(t_j),0,4,0);

new line; put("THETA OLD(J) a "); put(theta old(t j),0,4,0);
putT", COST SUM = "T; put(cost sum,0,4,0); now Tne;
put("ETA - "'; put(eta,0,4,0); put(", ALPHA - T)

put(alpha,0,4,0); now-line;

* end update thresholds;

end perceptron_support;

ie

o1

(-I

-- *PACKAGE TITLE MATHLIBEXTENSIONS

-- AUTHORS :LT STEVE TROXEL
* -- * CAPT DENNIS RUCK

-- DISCRIPTION This package contains supportC
-- *necessary to run M4P

INUT Prcdr Deedn

OUT IPUT Procedure Dependent

with system; use system;
package math_lib-extension is

procedure mth random (Val :out float; seed :in out unsigned_longword 1
* Prague INTERFACE (vaxrtl, nth-random);

Pragua IMPORT VALUED PROCEDURE (nth-random, "MTH$RANDOM",
mechanism -> (value, reference)):

procedure uniform (center in float;
width in float;
seed in out unsigned_longword;
Val out float)

procedure gaussian (mean in float;
variance in float;
seed in out unisigned_longword;
Vol out float)

end math-lib-extension;

(package math libextension is

procedure mth random (Val :out float; seed :in out unuignod-lonqword)
pragma INTERFACE (vaxrtl, mth-random);
Pragua IMPORTVALUEDPROCEDURE (nth random, "MTH$RAIIDOM',

mechKanisms -> (value, reference));

procedure uniform Ccenter in float;
width in float;
seeod in out unsigned_longword;

*val out float);

procedure gaussian Cmean in float;
variance in float;
seed in out unsigned-longword;
Val out float C

end math-lib-extension;

8-1

11!C 1 ,1

I -- ' P*ACAG TTLE VCTOROPRMIOS

-- G ftT *f*

-- ~ AUTHOR LT STEVE TROXEL f

* -- CAPT DENNIS RUCK

-- t....ftt~t..t~t f... ftft f. .. ft. f.......f...ft.....fftt

-- ~ DISCRIPTION This package contains the vector math
support necessary to run MP

INUT PrcdueDpedn

OUT IPUT Procedure Dependent

* package vector-operations is

type vector is array Cinteger range (>) of FLOAT;

*type matrix is array Cinteger range <>, integer range o)of FLOAT.

function "(left vector;
*right matrix) return vector;

function -"(left, right vector)return vector;

function '~Cleft, right vector)return float;

end vector operations;

package body vector_operations is

function "*"(left vector;
right matrix) return vector is

(sum LOAT;
product vector (right'rangs,12?

begin

for j in right'range(2) loop
sun :. 0.0;
for i in right'range(l) loop

sum :- sum + left~i)*right~i,j);
* end loop;

product~j) :- sun;
end loop;

return product:

end ~

4function - Cleft, right vector)return vector is

diff :vector C lft'ronge)

begin

for i In left'renge loop
diff~i) :- left(i) - right~i);

nd loop;

* return diff;

3-17

L4N& 'MMO m

end -

*function Cleft, right vector Creturn FLOAT is

sun FLOAT :-0.0;

begin

for i in left'renge loop
sun :. sun + left(i)*right(i);

end loop;

return sum;

end "

end vector operations;

9-1

(-- * PROGRAM TITLE : DATA DIS *

-- * AUTHORS : LT STEVE TROXEL *

-- DISCRIPTION THIS PROGRAM COMPUTES THE DISTANCE *
-- * BETWEEN A TEST ARRAY AND THE AVERAGE *
-- * LOCATION OF A SET OF TRAINING ARRAYS *

-- * INPUTS NUMBER OF INPUT FEATURES *
-- *TRAINING AND TEST FILES *

-- * OUTPUT CORRESPONDING DISTANCES *

t with text io; use text io;

with float textio; use float textio;
with integer text io; use integer text io;
with floatmath_lib; use float_math_lb;

Procedure Data dis is

% ' Type Array Type is array(lnteger range <>, Integer range <)of float;

S Array Array Type(1..21,1..21);
T Array ; ArrayType(..21,1..21);

0SFile Name stringl..80);
T-File Name string(l..80);
File Name string(1..80);
File LIST string(l..80);

S Last,T Last,n,num,
last,last2,class,
rowl,coll,d siz*e Integer;
S File Text io-file type;
T-File Text-io.file-type;
TNT rile Text-o.file-type;
INT-File2 Text io.filo-type;
Srow, Scol,skip,
S value, T row,
T-col, T value integer;
S-sum, T-sum,
Distance,sum float :- 0.0;

ans Character;

begin -- Data dis

-- this procedure requires the input files to be in a specific format.

-- the first record contains the class
-- remaining records are in a row, column, value format

-- for a complete 21 x 21 array.

for row in 1 .. 21 loop
for col in 1 .. 21 loop
tarray(rowcol):- 0.0;
a array(row,col):- 0.0;
end loop;

end loop;

new line;
putT*mnter the file list name);getline(file ist,last);
new line;
putTu'nter the number of training files...");get(nus);akipline;
new line;
putT"mnter the number of input features ... ');yet(n):skip line;

3-19

MAMM

* (d size :- integer(sqrt(float(nMf/2;
open(file =) t-tile,

node >in file,
name -)file-list(l. .last));

-it is assumed that the training files are listed first in
-the file-list file

-find the reference point
-this is the point specified by the average value of
-each component in the first class of training data

for j in 1 .. nun loop
get -line(int-file,file-name,last2);

open(file ->Int file2,
mode *in file,
name*- file name(l..last2)H;

get(int_file2,class);

6 for row in 1 .. 21 loop
for col in 1 .. 21 loop

get(int file2,rowl);
get(int-fil*2,coll)
get(int-file2.integer(s array(row,col)));

end loop;
jp end loop;

close(int-file?);

sum :- 0.0;

-normalize the input data

for row in 11 - d size .. 11 + d size loop
for col in 11 -d size . . 11 3 d size loop

sum :- sum + a array(row,col)2;
end loop;

end loop;

sum :- sqrt(sum);

for row in 11 - d size . . 11 + d size loop
for col in 117: d size .. 11 +d size loop

t array(row,cof) :- t-array(row,col) + a-array(row~col)/sum;
end loop;

end loop;

end loop;
close(Xnt file);
for row in 11 - d-size . . 11 + d size loop

for col in 11 - d sixe .. 113+ d size loop
t arrayfrow,col) :- t-srray(rojw,col)/float(num);

Cp

end loop;
end loop;

* open(file . mt file,
mode -in lile,
ame file liat(l..last)):

-compute distances on the entire list of fies

while not end-of-file(int-file) loop

distance :- 0.0;
sum :. 0.0;

3-20

5,

*

1, file naeo(l. .351:-""
[. get Tine(int filefile name,laut2)

V open(file int filo2,
mode -> in lil*,
name => file name(i..last2));

9et(int file2,class);

for row in I .. 21 loop
for col in 1 .. 21 loop

qet(int file2,rowl):

get(int file2,coll);
qet(int filo2,integor(s array(row,col)l);

* end loop:
end loop;
close(int file2);

for row in 11 - d size .. 11 + d size loop
for col in 11 - d size .. 11 + d size loop

sun :- sun ooaarray(rowcol)"2
end loop

end loop:

sum :- sqrt(sum);

for row in 11 - d size .. 11 + d size loop
for col in 11 d size .. 11 + d size loop

distance = distance + (aarray(rowcol)/sum -

f n terray(row,col))**2;
Y end loop:

w end loop;

distance :- sqrt(distance);
new line:
putTfile_name(l..35)):put(distance,4,4,O);

end loop:
close(Int _file);

End Data Dis;

-,

5-21

-Ai89 926 POSITION SCLf AND ftOTfTION INVARIANT TARGT
RECOGNITION USING RANGE INAGERY(U) AIR FORCE INST OF 21
TECH uRIGHT-PATTERSON AFB OHSCHOOL OF ENGI

UNCLASSIFIED S E TROXEL DEC 87 AFIT GEO/ENG/87D-3 F/G 0/9

ESO EENhh

L3

"'111 -25- 1 I i

Il.j. 11 * IiI

'p,

-- - - - -- - - - -

(-- * THE FOLLOWING IS A LISTING OF KOBEL AND MARTINS

-- * DECLARATION HANDLER PACKAGE. THIS PACKAGE HANDLES
-- * THE DECLARATIONS FOR THE EXECUTIVE PROGRAM. EXECUTIVE *

* -- 0 ASSUMES A DIRECTORY SYSTEM SPECIFIED BY THE LAST DIR *
-- AND DIRECTORY STATEMENTS BELOW. THESE NEED TO BE *
-- CHANGED TO REFLECT THE USERS DIRECTORY SYSTEM AND *
-- " WHERE ALL THE OUTPUTS OF EXECUTIVE ARE TO BE SENT

• -- Program: DECLARATION HANDLER
-- Authors: Capt William Kobel and Capt Timothy Martin

/ -- Date: 1 October 1986
-- Language: Vex Ada
-- System: ISL VAX/VMS
-- Function: Allows global declarations

package DECLARATION HANDLER is

These declarations form the basic image array

type Cmplx_Type is
record

Real : float;

Imag : float;
end record;

C type ImageArrayType is array (integer range >,
integer range o) of Cmplx_Type;

-- This type declaration allows three different kinds of correlation for
-- both the cyclic and linear cases

type Corr_Flag_Type is (Cir_0, Cir_1, Cir_2, Lin_0, Lin_1, Lin 2);

-- This type declaration is used to keep track of the file types within
-- OPERATIONS-HANDLER

type Array_FlagType is (Square, Lg Square, Polar, LgPolar);

-- These declarations form the basic image file dimensions

V Row : integer :- 256;
V-Col : integer :a 256;

-- This declaration sets the default directory for all input/output

-- procedures within FILEHANDLER

Last Dir : natural := 27;
Directory : string (1 Last Dir) := '[afituser.stroxel.vidfiles]j;

-- This sets up the prgss interface to the RTL to spawn DCL commands

procedure SEND COMMAND lCommandLine : in string);

pragma interface (RTL, SEND COMMAND);

pragqu import_procedure (Internal = SENDCOMMAND,

External => "lib$spawn",
Parameter_Typos) (string),

Mechanism - (descriptor(S));

end DECLARATION HANDLER:

3-22

Sc

(- * PACKAGE TITLE : PEAK

-- * AUTHORS : LT STEVE TROXEL

-- •DISCRIPTION : THIS PROGRAM LOCATES THE PEAK VALUE *
-- IN AN ARRAY AND SAVES A 21X21 ARRAY *
- -- * OF NUMBERS AROUND THE PEAK *

-- * INPUTS : 512 X 128 CORRELATION ARRAYS

*OUTPUT :A 21 X 21 ARRAY AROURD THE PEAK *

-- THIS PROGRAM IS SET UP TO RUN IN A BATCH ENVIRONMENT --

-- DURING THE THESIS I WAS USING EXECUTIVE TO CREATE MANY --

-- PSRI CORRELATIONS. THESE ARE VERY LARGE ARRAYS (2K BLOCKS) --

-- AND TAKE TIME TO CREATE (10 MIN CPU TIME). THIS MADE IT --

-- NECESSARY TO RUN THE CORRELATIONS CONTINUOUSLY IN A BATCH --
-- MODE. HOWEVER, IN A SHORT TIME THE CREATED ARRAYS WOULD --

-- EAT UP ALL AVAILABLE MEMOREY. SUBMITING THIS PEAK PROGRAM --

-- ABOUT EVERY 2 HOURS HELP IN THIS PROBLEM.

with text io; use text io;
with floaT text jo; use floaT text io;
with intoger tot io; use integer_text io;

with File Handler. use File Handler; -- A KOBEL,MARTIN PACKAGE
with DeclarationHandler; use DeclarationHandler;

Procedure Peak is

-- For some reason these large arrays have switched to an --

-- x,y representation where 0,0 is the lover left corner --

Image :Image ArrayTypo(0..511,0..255);
Image File Name string(l..80);
New File Nfame string(l..80);

Total rileNamo string(l..Last Dir+80);
InternalPilo Text io.file type;

* Last -- natural :w 0;
Last new natural 0;
Last-total natural :- 0;
Max -row : integer :- 0;
Max col integer :- 0;

rowl,coll,row2,col2 integer : 0;
max val : float :- 0.0;
ns : character;

C Extension string (1..4) :- ".dat";

begin -- Peak

Startloop:
loop

-- The peak.eom file will create a file list of all
-- the .lcr files. These files are the correlation files.
-- However, the file list will start with a directory name
-- that we don't want to read

Getlino(Imagefile name,last);

3-23

it Imag* file-nono(l) - 'N' or(Image file namedl) a 'r' then
Sxit Sitart-loop;

end if;

end loop utart loop;

Peak loop:
loop

max Val :- 0.0;
Reaa Piledimage PileName, Last'luage);

* Chanie ExtonsioW(Iage File Name, NewPileNameLast,
Last New, Extension);

* Last Total :- Last new + Last dir;
TotalPileNsme(l.7Last total) :a Directory(l. .Last dir)

& New FileNamedI.. Last Ne0w);
Create (tile -> Internal File,

mode a) outPile,1
name a) Total-fileName(l..(LastTotal)));

* -- find the peak Value

for row in Image1range(l) loop
For col in Imag*erange(2) loop

If Image(row,col).real >max val then
max val :- Imaqe(row,col).real;

J rowl arow;

Cell aCol;

end if;
end loop;

end loop;

-- Create a 21 x 21 array around the peak
-a wrap around is used between the top and bottom
-and between the sides

Put(rowl) ;Put(coll) ;Put(max val);* For row In rovl-lO .. rovl.1bD loop
for col in cell-10 .. coll+l0 loop

it row (0 then
row? := 512 + row;

alse
it row)511 then

row? : row - 512;

* row? : row;
end if;

and it;
*It Col (0 then

c0l2 :- 256 + col;

It col)255 then

col? : col - 256;

C012 :-Col;
end it;

and if;
put(Internal Pilo,row2,6):
put(InternalFile,col2,6);
put(Internal fil,nteger(maqe(row2,col2).real),10);
new 'lino(intrnalPile);

End l ooip;
End loop;

put(Internal -Pil,999,6);(put(Intornal-rilg,999,6):

B-24

(close(intornalPile);

after the list of files there will be
* -- ablank line, this is where we want to stop

Get lineCIoaWS file namelast);
if rast - 0 then-

exit peak loop;
end if;

end loop peak_loop;
* End Peak;

STHE FOLLOWING IS A LISTING OF THE PEAK.COM
*FILE USED TO RUN THE PEAK(PROGRAM4

$set default fafituserastroxel .vidfilesl
$dir/col-l/out-pook.inp *.lcr

* $assign/usor peak.inp sys~input
$assign/user peakout sys$output
$run peakeOXe
$del *.lcr;*
$pu *.lgf
$pu *.vid

-~The delete removes the correlation files which are not
-needed since we now have the peak. The pu statements are

-to remove extra rotated versions of the psri files (.lgf)
-and the vidio files (.vid)

5-25

-- ' PACKAGE TITLE GOODMAN_ SCWARE

-- AUTHOR LT STEVE TROXEL

-- D DCRIPT'O :Tis paaeexctsaodm-Shaz

-- ~celtion as discussed in my thesis.
-Th correlation is performed by firest
-- deviding the template into 9 sections
-- and correlating with each of the 9
-- f seperately. This package also allows
-- for location selection based on the

f- umber o f sectors that pass threshold.
-- This locates partially occluded objects.

-- INPUTS Image array, Template array
-- Tolerance used to determine acceptable
-- peak values

* - ~ OUTPUT :Location of the correlation peak
-- Complete correlation array

-- ~ THIS PROCEDURE ASSUMES THAT THE SUPPLIED TEMPLATE *
-- ~ IS CENTERED AT THE 126,128 LOCATION IN THE ARRAY *

With text io; use text jo;
with floaitotxt io; use float text io;
with integar -text io: use integir teit io;
with float miath lib; us* float math lib;
with declaiation; handler; use declaration handler;
with file-handler; use file handler;--A Kobel&Martin

-Package

Procedure Goodmen-schware Is

Image : mage_Array_Type(0. .255.0. .255),
Temp Image_Ahrray _Typec(0. .255,0. .255);
Temp_hold : Iagej_Array_Type(0. .255,0. .255);
stmp Image ArrayTypetO. .255,0. .255);
Num_-Array : mage_A rray_.Type(0. .255,0. .255);
Num_sectorArray: Image_ Array_ TypeCO. .255,0. .255);

* Image name String(l. .80);
Temp_name String(l. .80);
Last_Image natural :0
LastTemp natural :-0;

NTemp-sum float -0.0;

Temp__aye float :-0.0;
Tamp count integer -0;

Max Row Image,
Max Row Temp.
Max Col Image,
MaxCol_-Temp.
S row,
S col,
Tn _row,

Tni col,
Row-limitl,
Row limit2,
Cal limitl,
Cal limit2,
Count,
Best-row,

11-26

.... +- -- , - - -- - - , 4 - ,

0

Best col,(um ector integer;
Threshold,

Tol,
*limit,

Max val,
Sub-limit,
Sub thrash,
Sub tol float;
Choice,
Row_Dim,
Col Dim,
Mn- row-dim,
Max row dim,
Min ol dim,

1 idim integer;
Ex*ension String(l..4) :- ".bfc";
Ats Character;

PROCEDURE FIND DIM *
-- ' THIS PROCEDURE FINDS THE DIMENSIONS OF THE TEMPLATE *
-- *._ ... * *te*te.eet**et**ete*ete..*..*.et*eto.e .e** **.*

Procedure Find dim(Tomparray in out Image ArrayType;
Min row dim in out Integer;
Max roy dim in out Integer;
Mmn col dim in out Integer;
Maxcoldin in out Integer) is

begin -- Find dim

Min row dim := 256;

Max row dim :- 0;
Min col dim :- 256;
Max col dim :- 0;

For row in Temp array'rang4(l) loop
For col in Temp_array'ranqe?2) loop

If Temparray(row,cnl).real /- 0.0 then
If row > Max row dim then

Max rowydim :; row;
End if;

If row < Mn row dim then
Min row dCim :Z row;

End if;
41If col) Max col dim then

Max col dim :Z col;
End if;
If col (Min col dim then

Mn col dim :Z col;
End if;

End if;

End loop;
End loop;

End find-dim;

-- *PROCEDURE SMOOTH
-- * THIS PROCEDURE SMOOTHS THE VALUES OF AN ARRAY
-- * THIS IS NEEDED If THE ARRAYS CONTAIN NOISE

-- THAT MUST BE CORRECTED FOR *

-- The goal in the smoothing operation is to make sure that each
S-- individual pixel is numerically between each adjacent pixel.

-- If the pixel is numerically outside the value of adjoining

3-27

SW

-pixels, its value is set equal to the pixel value its closest to.

(procedure Smooth (I-array :in out ImageArray_.Type) is

TImage : mage AhrrayType(O. .255,0. .255);

Function Max(A , 83 float) return float is

C :float;

begin - Max

If A 8 then
C C A;

Else
C a- ;

End If;
Return C:

End Max;

Function Min(A , B :float) return float is

C :float;

begin -- Min

If A <3 then
C :A

Elsea
C :- ;

End If;
Return C;

End Min;

begin -- Smooth

TImage :- I_array;
For row in I arraylfirst.l .. I-array'last-1 loop

for col In I-array'first+l .. I-array'last-1 loop

If (I_array(row,col).real >- I_array(row,col-1).real and
I array(row,col).resl =- I array(row,col+l).real) or
(I-array(row,col).real <- I array(row,col-l).real and
I array(row,col).real >- I array(row,col+l).real) then

If (I-array(row,col).real >- I-array(row-l,col).real and

I_array(row,col).real <- I array~row+l,col).real) or
(I-array(row,col).real (- I array(rov-l,col).real and
I-artay(row,col).real)a I-array(row+l,col).real) then

null;

elaif Iarray(rov,col).real >- I array(row-l,col).real and
I-array(row,col).real >- I-array(row+l,col).roal then

Tmagqe(row,col).real :- Max(I array(row-l,col).r*al,
I_array(row+l,col).real);

else TInage(row,col).real :- Min(I -array(row-l,eol).real,
I_array(row+l,col).real);

end if;

If I array(row,col).real >- I array(row,col-1).real and
I7array(row,col).real - Iarray~row,col~l).rssl then

(?Img*(row,col).real : MaxCI array~rov~col-l).rsal,

9-20

else. I array(ro,col+l).ral);

Tlmag.(row,col).real :- Min(I array(row,col-l).real,
I-array(row,col+l).real);

end if;

If (TImage(row,col).roal >- I array(row-l,col).real and
TImoge(row,col.real <- 1Iarray(rov~l,coll.real) or
(TImaq.(rov,col).real - array(row-l,col).real and
T _Inage(rowcol).real -Iarray(row+l,col).real) than

null;

elaif T_-Image(row,col).real >= I array(row-1,col).real and
TImag.(row,col).real >- I-array(row+l,col).real then

T_Image(row,col).real :- ax(I array(row-l~col).real,
I_array(row+l,col).real);

elT_Iag(row,col).real
:=Min(I array(row-l,col).raal,

I_array(row+l,col).real);

End if;
End if;

End loop;
* End loop;

I_array :- T_Iage;
End Smooth;

-- PROCEDURE RAIENT
-- THIS PROCEDURE TAKES THEAGRADIENT 0F AN ARRAY

,-* . .. *.* ** ***."6* *******..*** * ** *******

procedure GradI~nt(Zm&q. Array :In out Image_-Arrsy_Type) Is

type CXArray_Trype is arraycinteger range <>,integer range (>) of float;
type CYArrayType ia array(integer range (>,integer range*0 of float;

aumX float;
aumY float;
CX CXArrayTyp*(i. .3,1. .3);
CY CY Array Type(l. .3,1. 3);
I-hold-array I mage_array typecO. .255,0. .255);

bagin -- Procedure Gradient

CX(l,l) :--0.5;
CX(1,2) :--1.0;

CX(1,3) :--0.5;

CX(2,1) :.0.0;
CX(2,2) :-0.0;

CX(2,3) :-0.0;
CX(3,l) a0.5:

CX(3.2) a1.0;

CX(3,3) :-0.5;

CY(l,1) a-0.5;

CT(1,2) :-0.0;

CT(1,3) 0.5;
CY(2,1) a-1.0,

* CT(2,2) a0.0;

CY(2,3) a1.0:

5-29

CYI(3,l :- -0.5:
CY(3,2) :- 0.0;
CY(3,3:) 0.5;

SFor row in 1 hold_array'range(I) loop
For col in I__holdarray'range(2) loop

I hold array(row,col).real -0.0;
I-hold-arry(row,col).imag :- 0.0;

end roop--
end loop;

For Row in 1..Image_Array'last(l)-l loop
For Col in 1..ImageArray'last(2)-l loop

sumX := 0.0;
suIT :- 0.0;

For n in 1..3 loop
For a in 1..3 loop

iumX :- iu&X + CX(m,n) * (Image_.Array(row+m-2,col+n-2).real-
ImageArray(row,col).real);

end loop;
end loop

Fr n in l..3 loop
For i in 1. .3 loop

aumY :- sumY + CY(m,n) * (ImageArray(row+n-2,col+n-2).real-
ImageArray(row,col).real);

end loop;
end loop;

If suaX a JulY then

I_holdArray(row,col).real := suax;

I holdArray(row,col).real :s sumY;
end -f;

end loop;
end loop;

Image array :- I hold array;

end Gradient;

-- * PROCEDURE SUB CORR *
-- THIS PROCEDURE PERFORMS THE SUB CORRELATION *
-- MULTIPLICATIONS AND ADDITIONS REQUIRED FOR EACH OF *
-- * THE SHIFTS IN THE GOODMAN-SCHWARTZ CORRELATION *

Procedure Subcorr (Image in Image_Array_Type;
Temp in Image ArrayType;
Btap in out Image Array Type;
Nun Array : in out ImageArray_Type;
Kum sector Array : in out Image_ArrayType;
Ro-limitl-: in Integer:
Row-limit2 in Integer;
Col limitl in Integer;
Col limit2 in Integer;
S row in Integer;
S col in Integer;
R;w in Integer;
Col in Integer;
Count in out Integer;
-est row out Integer;
Best col out Integer;

5-30

Limit :in Float;
Threshold in Float;
max Val in out Float:
Chorce in Integer;

*Temp ave :in Float;
Tamp_ count in Integer;
sub limit in float;
sub-thresh in float) is

Target_sum,
Djff,
Sum top,
sumBottom,

* Top,
Bottom :Float;

Begin -- SubCorr

Target_sum :-0.0;
sum top :- 0.0;
sum-bottom :- 0.0;

If abs(NumArray(row,col).real-Threshold) <Limit then
if choice - 2 then

-Equalize the average of the target pixels to that

-of the template pixels
For Vrow in Row limitl .. Row limit2 loop

for Vcol in CEol -limitl . . Col limit2 loop
Target sum :- Target sum + Imaqo(vrow,vcol).real

Btmp(vrov-row+128 ,vcol-col+128).real;
End loop;

End loop;
Diff ~ Temp-ave - Target_sum / float)Tenp _count);

Else
Diff :-0.0;

End if;

For Vrow in Row limitl .. Row-limit2 loop
For Vcol in Col limitl . . Col limit2 loop

top :- (Imago(Vrow,vcol).real + Diff) *

* Tomp(Vrow-row+128 , lVcol-col+e128).real;
bottom :-((Image(Vrow,Vcol).real + Diff)

Btmp(Vrow-row+128 ,Vcol-col+123) . real) **2;
Sum-top :-sum-top + top;
Sum 'bottom :- sum-bottom + bottom;

End loo p;
End loop:

* t~'if sum bottom /- 0.0 then
If ag's~sum top**2/sum bottom - sub-thresh) sub limit then

Mum-sectEor-array(row,col).real -= Num-sector-array(row,col).real +
1.0;

end if;
MumArray(row,col).real :-MumArray(row,col).real+

sum top ** 2 /sum-bottom;
end if;

I'If Mum_-Array(row,col).real >MaxVal then
Max val :-Mum Array(row~col).real;
Best row :-ro;
Best col :-col;

and If;

Count :- count + 1;
elso

16 Mum_-Array(rov,col).real -0.0;
and if;

End Sub-corr:

M-*PAIN PROCEDURE Of GOODMAN _SCKflARZ

Begin -- Goodman schwarz

For row in Isogo'rango(l) loop
For col in Image'rang*(2) loop

Num Arrayirow,col).reel :-0.0;
NunArraylrow~col).ia~g :-0.0,

Nun sector Arrayirow,col).real .0.0;
Temp hold(row,col).real :-0.0;

Temp hold(row,col).inag -0.0;
End loop;

End loop;

put("Image file:
Got File(Inage NameLast ImageMaX_Row_lmageMaxClImage);
putTeTmplate 'File: ");

r GetFileCTempNameLastTemp,MaxRowTemp,Max_CalTemp):

-- Tol is used as what amount below threshold should a point be
-- concidered acceptable. This effects the further processing rules.

-- Sub tol is used for each individual sector. To use this program

-- to c;heck for partially occluded targets, tol should be set to 1.0
-- and set sub tol to the tolerance value (io. 0.5 means that 20% of

-- the ideal max is acceptable).

Put ("Enter Sum Tolerance : "); Get(Tol);skip -line; New-Line;

Put("Enter Sector Tolerance :"); Get(sub_-ToT);skip line; NewLineC?);

Put Vl) Gradient Operation);new -line;

PutVZ2) Average Equalization ");new_line(2);
Put("Enter choice ");get(choice);skip line;new line;

Read File) Image Name ,LastImage ,Imsge);

ReadFile(TempNameLastTempTemp);

Smooth(Temp);
Smooth (lmage):

If choice - I then

Gradient) temp);

Gradient (image);

-- lininate a two pixel boundary around the template

For row in temp'first(l) + 2 . . temp'last(l) - 2 loop
for col in temp'first(2) + 2 .. tomp'last(2) - 2 loop

if temp(row~col-2).real - 0.0 orK~prwco+)a -_.0o
temp(row-,col).real -0.0 or

tomp(row+2,col).real - 0.0 then

temp_hold(row~col).real -0.0;

else
temp-hold(rov,col).real :=temp(row,col).real;

end if;
end loop;

end loop;

3-32

tamp :- temphold;
(nd if;

-- Create a binary form of the template

For row in temp'ranqo(l) loop
For col in tamp'range(2) loop

if tomp(rowcol).real = 0.0 then
btmp(row,col).real : 0.0:

else
btmpfrowcol).real -1.0;

J

end if:
end loop:

end loop:

Find dim(Temp,Min row dimMax row dimMin col dimMax col dim):
row dim :. Max row dim - Min row dim + 1:
col-dim : Max col dim - Min-col-dim + 1;

put('Beqin Correlation
new line:

S row :- Integer(row dim /2):
S col := Inteqer(col _dim /2):
Tri row:. Integer(row_dim/3);
Tr col := Integer(coldim/3):

For Quad in I .. 9 loop
Count := 0: Max val :- 0.0; temp sum : 0.0; temp count :- 0:Z~f Quad - I then --

limit :- 100.0; threshold :- 0.0: sub thresh :- 0.0:

-- Find the average value of the template pixels

For rowl in 128 - S row .. 128 - S row + Tri row loop
For coll in 128 - S col + Tri col 1..-

128 + S col - Tri col - 1 loop
*If temp(rowl.coll).real /- 0.0 then

Sub thresh :- sub thresh + Temp(rowlcoll).real " 2;
Tempsum :- Temp sum + temp(rowl,coll).real:

Tampcount :- Temp_count + 1;
End if:

End loop:
End loop:
Temp ave :- Temp sum / flost(temp count);
Sub-limit :- Sub-thresh " sub-tol:

olsif quad - 2 then

Threshold :- Threshold * sub thresh:
sub thresh :. 0.0:
PutT" Threshold - "):put(threshold,2,2,0);newline:
limit :- Threshold * Tol;

* -- Find the average value of the template pixels

For cowl in 128 - Srow + Tri row + I ..
128 + S row - Tri row - 1 loop

For coll in 128- S col +Tri col + I
128 + S -col - Tri-col - 1 loop

If temp(rowl,coll).real /- 0.0 then
Sub thresh :- sub thresh + Temp(rowl,coll).real " 2;

Tempsum :- Temp sum + temp(rowl,coll).resl:
Tempcount :. Temp count + 1:

(End if:

3-33

N" .. j

- ~ ~ ~ ~ ~ n loop;rrr--.-r-r

End loop;

Temp ave :.Temp-sum / float(temp_count);
Sub limit :-Sub thresh *sub tol;

elaif Quad - 3 then

Threshold :=Threshold + sub-thresh;
sub thresh :-0.0;
PutT" Threshold =):put(threshold,2,2,0);nev line;
limit :a Threshold Tol;

-Find the average value of the template pixels
for rowl in 128 + S-row - Trirow

128 + S row loop
For coll in 128 - S-col + Tri col + 1

128 + S col - Tri col - I loop
If temp(rowl,colrl).real 1Z 0.0 then

Sub thresh :- sub thresh + Tomp(rowl,coll).real *2;

Temp-sUm :- Temp_sum + temp(rowl,colll.real;
Temp -count :- Temp_count + 1;

End if;
End loop;

S End loop;
Temp_ave Temp -sum / float(tomp_count);
Sub-limit aSub thresh *sub-tol;

elsif Quad - 4 then

Threshold :- Threshold + sub_thresh;
sub thresh :- 0.0;

* 'Put(" Threshold =");put(threshold,2,2,0);new line;
limit :- Threshold *Tol;

-Find the average value of the template pixels
For rowl in 128 - S-row + Tn -row + 1 .

128 + S-row - Tn row - 1 loop
For coll in 128 - col .

If 128 -S col + Tri col loop
Iftemp(rowl,cof'l).real /;'0.0 then

sub -thresh :- sub-thresh + Tompirowl,coll).real 2;
Temp_sum :- Temp_sum + temp(rowl,coll).real;
Temp_count :- Temp_ count + 1;

End if;
End loop;

End loop;
Temp ave :- Temp sum / float(tmp_count);
Sub limit :- Siab-thresh * sub tol;

elsif Quad - 5 then

Threshold :-Threshold + sub-thresh;
sub thresh -0.0;

PutT" Threshold -);put(threshold.2.2,0);new line;
limit :- Threshold Tol;

-- find the average value of the template pixels
For rowl in 128 - S row + Ti _row + 1 .

128 + S row - Trirow - I loop
For coll in 126 + 5 ccl - Tn _col

128 + S col loop
If tomp(rovl,cor'l).real /- 0.0 then

Sub-thresh asub-thresh + Temp(rowl~coll).real **2;

3-34

Temp sum :- Temp sum + tomp(rovl~coll).real;
Temp-count :- Temp count + 1;

End if;
End loop;

End loop:
Temp ayee :.Temp sum / floatitemp count);
SubTimit :-Sub-thresh * sub-tol,

elsif Quad - 6 then

Threshold :.Threshold + uub-thresh;
sub thresh :=0.0;
putt" Threshold - "kput(threahold.2,2,0);nev line:
limit :- Threshold *Tol;

-Find the average value of the template pixels
For rowi in 128 +. S row - Tri row,

128 + S row loop-
For coll in 128-- S col

128 - S col +. Tni col loop
If temp(rowlcoll).roal /Z 0.0 then

Sub thresh :. sub thresh + Temp(rowl,coll).roal 2;
Temp sum :- Temp_sum + temp(rowl,coll).real;
Temp count :- Temp count + 1;

End if;
End loop;

End loop;
Temp Iave,: Temp-sum / float (temp_count);
Sub limkit :-Sub thresh I sub-tol;

elsif Quad - 7 then

Threshold :-Threshold + sub-thresh;
sub thresh :-0.0;

$PutT" Threshold *);put(threshold,2,2,0):nov-line;
limit :- Threshold *Tol;

-Find the average value of the template pixels
For rovl in 128 +. S-row - Tri-row

128 + S row loop-
For coll in 128 + S col - Tri-col

128 + S c ol loop
If temp(rowl,corlk)real /a 0.0 then

Sub- thresh :- sub-thresh + Temp(rowl,coll).roal 2;
Temp sum :- Temp sum + temp(rowl,coll).real;
Temp_count :- Temp_count +. 1;

End if;
End loop;

End loop;
Temp ave :=Temp sum / float(temp_count);
Sub-limit :-Sub thresh * sub-tol;

elsif Quad - S then

Threshold :-Threshold + sub-thresh;
sub thresh :-0.0;
PutT" Threshold =);put(threshold,2,2.0);new line;
limit :- Threshold *Tol;

-Find the average value of the template pixels

For rowl in 128 - S-row .
128 - S row + Tni row loop

For coll in 1287- 5 col 7
128 -S 3o1 + Tn -col loop

9-35

C

If temp(rowl,coll).real /a 0.0 then
Sub-thresh :- sub_thresh + Temp(rowl,coll).real 2;

Temp_sum :- Temp_sum + temp(rowl,coll).real;
Temp_count :- Temp count + 1;

End if:
End loop;

End loop;
Temp eve :a Temp sum / flo&t(temp count):
Sub-limit :- Sub thresh * sub-tol;

elsif Quad - 9 then

T hreshold :-.Threshold + sub-thresh;
su hresh :- 0.0;

PutT" Threshold =);put(threshold,2,2,0);new line;
limit :- Threshold *Tol;

-Find the average value of the template pixels
For rowl in 128 - S-row .

128 - S-row + Tri row loop
For coll in 128 + S-col - Tri-col

128 + S_col loop
if temp(rowl~coll).real /- 0.0 then

Sub -thresh :- sub_thresh + Tomp(rowl,coll).real 2;
Temp-sum :- Temp_sum + temp(rowl,coll).real;
Temp_count :- Temp-count + 1;

End if;
End loop;

End loop:
*Temp -ave :-Temp sum / float(teup_ count);

Sub limit :-Sub-thresh * sub-tol:

end if;

For Row in Image'first(l) + S row .. Image'last(l) - S row loop
For Col in Image'firstM2 +; S-col . . Image'last(2) S col loop

if Quad -1 then
Row limit! : row - S row:
Row limit2 :-Row lialtl + Tni row:
Col limitl :=Col - S col + Tr-) col + 1;
Col limit? : Col + S-col - Tri col - 1;

Elaif Quad - 2 then
6Row-limiti : Row - S-row + Tri row + 1:

Row limit2 :-Row + S row - Tri row - 1;
Col limitl :-Col - S col + Tri col + 1;
Col limit? : Col + S-col - Tri col - 1;

Elsif Quad - 3 then
Row limitl :-Row + $_row - Tri row:
Row limit2 Row + S-row:
Col limitl :=Col - S Col +. Tn col + 1;

Col_limit? : Col + S_col - Tn -col - 1;

Elsif Quad - 4 then
Row limitl :- Row - S-row + Tri row + 1;
Row limit? :a Row + S row - Tn _row -1:

Col limitl :-Col - S col:
Col limit? : Col - 5 col + Tni _col

Elsif Quad - 5 then
Row -limitl :-Row - S-row + Tri row + 1:(ow-limit2 :-Row + 8_row - Tri-row 1:I

3-36

Col - itI :. Col + S col -Tri col;(Cal limit? : Col + S-col -

lii Quad - 6 than
Row lisiti Row + S row -Tri row;

Row limit? : Row + S-row;
Cl linitl Col - S col;
Cal linjt2 :-col - S-col + Tri cal

lii Quad - 7 then
Row linitI Row + S row - Tnrarw;
Row linit? : Row + S row;
col liniti :=Cal + Seaol - Tri cal;

*Col limit? Col + S-col;

lii Quad - S then
Row liniti Raw - S row;

Row -linit? : Row - S -row + Tri row;

Col -limiti : Col - S cal;

Cal limit? : Cal - S-col + Tri col:

*Elifi Quad - 9 then
Row liaiti Row - S row;
Row -linit? Row - S row + Tri-row;
Col -liiti Col + S cal - Tri-col;
Cal limit? Col + Seaol; -

End if;

Sub corn (Image,Teap,BtmpNumArray,Num_sector array,

Row limitl,Row limit?,
Col liniti,Col limit?,
S row,S col,RoU,CoX,
count,B~st rawBest col,

lisit ,Throeshold,Maxvdl ,
choico,Teap_aveTemp_count,
Sub-linjt,sub-thresh);

End loop;
End loop;

put("Count - ");put(count,4);new-lin9;

Put(Bemt-row,6);Put(Sest-col,6) ;Put(Mex-val,1O,2,O);

End loop;

Threshold :a Threshold + Sub thresh;

Put(" Threshold - ");put(tEhreahold,?,2,O);new line;

Sector loop:
loop
put("Do you want to print the sector selections? (y/n))

qet(ans);ikip_lin*;nev line;
It ons - 'Y' or ans - Ty, then

count :- 0;
put("Enter the number of sectors to threshold the print selection")

get~nuu-sector):skip_line;new-line;

for row in nun sector array'range~l) loop
tar col in num secTor array'range(?) loop

it nun sector array(row,col).re&l f loat(num sector) than
counit -co unt + 1;

end it;
end loop;

0 end loop;

3-37

d 'si'.' .pill,

put("Number of points in this selection region is
put(count,2);new-line;
put("Do you want to print these points? (y/n)...");
qet(ansk skip_lin*;new-line;

If ens . 'Y' or ans - 'y' then
for row in nu,_-sector - rray'range(l) loop

for col in nun_sector_* rray'renge(2) loop
if nun sector array(row,col).real)- float(num sector) then

putTrow,4);put(col,4);
put(!nteqer(num-sector array(row,col).real),4);new line;

end if;
* end loop;

end loop;
end if;

else
exit sector-loop;

end if;
end loop sector-loop;

SaveFileclmageMemeLast_ImageNu-array,Extension);

End Goodman schwarz;

5-38

I

-- Program: DISPLAY
-- Authors: Capt William Kobel and Capt Timothy Martin
-- Date: 1 October 1986
-- Language: Vex Ads
-- System: ISL VAX/VMS

-- Function: This program displays files on the Evans a
-- Southerland PS 300 raster display using a 16 bit
-- psuedocolor or greyscale.

-- This porgram was modified by Lt Troxel to include a compact data
-- procedure. This allows for a much faster display time. Also, the
-- display program can now be run from any terminal.

with sequential_io;
with text io; use text io;
with float text io: use float text io;
with float math lib; use float-math-lib;
with integer text io; use integer text io:
with FORTRAN HANDLER; use FORTRAN-HANDLER;
with FILE HANDLER; use FILE HANDLER; -- A Kobel and Martin Package

* with IMAGE HANDLER; use IMAGE HANDLER; -- A Kobel and Martin Package
with DECLAJATIONHANDLER; use DECLARATIONHANDLER;

-- Procedure DISPLAY

procedure Display is

In File Name : string (I .. 80);
Max Row : integer:
Max Col integer;
Last : natural;
File Error : exception;

-- Procedure PROCESSFILE

-- Prepares file for the Evans & Southerland raster display.

-- Inputs: Max Row - this must equal the row dimension of
-- the file to be displayed.

-- ax Col - this must equal the column dimension of

-- the file to be displayed.

procedure PROCESSFILE (MaxRow, MaxCol : in integer) is

type Direction_Type is (Up, Down, Left, Right);

type Arrow_Record_Type is
record

Row Pos : integer;
Col-Po : integer;

Direction : Direction-type;
end record;

type Arrow -ArrayType is array (I .. 5) of Arrow RecordType;
type Video_FlagType is (Normal, Reversed, Enhanced, Original);

ColBoarder : integer :- 40;

9-39

a. '

now-Doarder integer :-10;
Max Rowi integer :-Max -Row - 1;
Max Coll: integer .MaxCol - 1;
max-Row 3rd :integer :-MaxRow + Row Boarder;
Max -Cal 3rd integer :. axCal + Col_-Boarder;
Arrow _Array Arrow_-Array-Type;
Ps. Array-Color :PaArray_Type (I1. MaxRow_3rd * Max Col_-Ord, 1 .. 4);

Image_,Array Image._ArrayType (0 MaxRowl, -0 Max-Coll);
edImageArray :Display- Array_Type (1 MaxRow 3Brd, I MaxCcl_3rd);
GrnImage_-Array Display Array_Type (1 Max_Roy 3rd, 1 MaxCal_3rd);
Blu image Array Display_,ArrayType (1 Max Row 3rd, I Max- Col Ord);

M ax Value float;
*File Sias integer;

Thresihold integer;
ColorIndex :integer;
Red integer:
Green integer:
Blue .integer;

ArrowCount integer;
Answer .character;

Colo r _Flag :boolean;
ArrowFlag boolean;
Video_Flag VideoFlagType;
Intensity_Error :exception;
k count integer;

-- Procedure ENHANCEVIDEO

-- E-iincos the lower values a file to be displayed by
-- computing the log base 10 of all values. This is an
-- option which may be useful for files that have been
-- Fourier Transformed.

-- Inputs: Image Array - array which contains the un-
-- enhanced data to be displayed.

-- Threshold - all un-enhanced values below
-- threshold will be set to sero
-- in the enhanced array. This
-- value can be used to aelect how
-- low of a value to enhance.

-- outputs: Image_Ahrray - array which contains the enhanced
-- data to be displayed.

procedure ENHANCE-VIDEO (Im*age Array :in out Image Array_Type;
Thresfold :in integer) To

begin

for Row in ImageArray'range(l)
loop

for Col in Image_ Array'range(2)
loop

if Image ,Array (Row, Col).Real (float (Threshold) then
ImageArray (Row, Col?.Real :-1.0;

end if;
Image._Array (Row, Col).Real :- 10glb (Image Array (Row, Col).Real);

end loop;
* end loop;

3-40

MWQ1

end ZNHAISCEVIDSO;

-- Procedure 33T COLORS

-- This is a color lookup table. There are 18 colors
-- assigned; one for each of 16 possible levels,
-- one for a background color, and white which is used in
-- the scales. The colors are formed by combining
-- differert amounts of red, green, and blue pigment.

-- Inputs: ColorIndex - an integer from 0 - 15 which
-- represents the level to be
-- assigned a color.

-- Outputs: Red - an integer from 0 - 255 which
-- represents the intensity of red

* -- pigment used in the color to be
-- displayed.

-- Green - an integer from 0 - 255 which
-- represents the intensity of green
-- pigment used in the color to be
-- displayed.

-- Blue - an integer from 0 - 255 which

-- represents the intensity of blue
-- pigment used in the color to be
-- displayed.

procedure SET-COLORS (ColorIndex in integer;

Red, Green, Blue : out integer) is

* begin

case Color Index is
when 0 > Red :- 0; Green := 0; Blue :- 110;
when 1 - Rod := 0 ; Green :. 0; Blue :- 150;
when 2 .> Rod :- 0; Green :- 0; Blue :- 185;
when 3 -, Red :- 0; Green :- 0; Blue := 220;
when 4 -) Red :m 0; Green :- 0; Blue :- 255;

when 5 -9 Red :- 0; Green :- 170; Blue :- 0;
when 6 - Red : 0; Green . 191; Blue :- 63;
when 7 - Red :- 0; Green a 225; Blue :- 40;
when 8 -> Red a 0; Green a 255: Blue 30;
when 9 - Red : 255; Green : 242; Blue 100;
when 10 -) Red : 255; Green : 220; Blue :a 127;
when 11 -) Red :- 255; Green : 191: Blue :- 129;
when 12 a) Red : 255; Green :. 161; Blue := 111:
when 13 -> Red :a 255; Green :- 130; Blue a 60;
when 14 * Red : 230; Green : 0; Blue : 0;
when 15 :> Red : 170; Green : 0; Blue : 0;
when 99 =) ROd : 0; Green : 255; Blue : 255;
when 999 -> Rod : 255; Green a 255; Blue : 255;
when others a> null;

end case;

end SET COLORS;

8-41

-- Procedure SET GREYSCALZ

-- This is a Greyscale lookup table. There are 16 grey-
-- scales assigned; one for each of 16 possible levels.
-- There is also a background color, and white which is
-- used in the scales. The greyscales are formed by
-- combining equal amounts of red, green, and blue pigment.

-- Inputs: ColorIndex - an integer from 0 - 15 which
-- represents the level to be
-- assigned a greyscale.

-- Outputs: Red an integer from 0 - 255 which
-- represents the intensity of red
-- pigment used in the greyscale to
-- be displayed.

-- Green an integer from 0 - 255 which
-- represents the intensity of green
-- pigment used in the greyscale to

* -- be displayed.

-- Blue an integer from 0 - 255 which
-- represents the intensity of blue
-- pigment used in the greyscale to
-- be displayed.

procedure SET GREYSCALE (ColorIndex : in integer;

Red, Green, Blue : out integer) is

begin

case Color Index is
when 0- = Red := 90: Green :- 90; Blue :- 90;
when 1 ., Red := 100: Green := 100; Blue :- 100;
when 2 -> Red :- 110; Green := 110; Blue :- 110;

* when 3 = Red :- 120; Green := 120; Blue :- 120;

when 4 -> Red :. 130; Green :- 130; Blue = 130;
when 5 => Red :- 140: Green :- 140; Blue := 140:
when 6 =) Red :- 150; Green :- 150; Blue :. 150;

when 7 . Red := 160; Green :- 160: Blue :. 160;
when 8 => Red :- 170; Green :- 170: Blue 2= 170;
when 9 -) Red :- 180; Green m 180; Blue := 180;
when 10 - Red :- 190: Green := 190; Blue 2= 190;
when 11 = Red 2= 200; Green :a 200; Blue := 200;
when 12 - Red := 210; Green a 210: Blue :- 210:

IC when 13 = Red :a 220; Green :- 220; Blue a 220;
when 14 Red 230; Green 230: Blue 230;
when 15 = Red :- 240: Green = 240; Blue :- 240;

when 99 . Red := 0; Green 2= 255; Blue := 255;
when 999 -) Red :- 255; Green :- 255; Blue = 255:
when others -) null;

end case;

end SETGREYSCALE;

-- Procedure SETBACKGROUND

-- Sets the background color. The color that the
MG -- background is set to is determined by the color

-- settings for entry 99 in the color or greyscales

(8-42

G.

4

-- lookup tables. The entire file is set to the one
-- background color; any data must be set onto the
-- background after this procedure.

-- Inputs: None

-- Outputs: RedImage Array array that contains the
amount of red pigment needed

to create the background
color. The background color
is constant so all values in

this array are equal.

-- GrnImage Array array that contains the
amount of green pigment needed
to create the background color.

All values in this array are
equal.

-- BluImageArray array that contains the
amount of blue pigment needed

-- to create the background color.
All values in this array are
equal.

procedure SETBACKGROUND (RedImageArray : out DisplayArrayType;
Grn Image_Array : out DisplayArrayType;
Blu ImageArray : out DisplayArray Type) is

begin

*for Row in I .. Max-Row-Brd
loop

for Col in 1 .. MaxColBrd
loop

ColorIndex :- 99;

if Color Flag - false then
SETOREYSCALE (ColorIndex, Red, Green, Blue);

*) else
SET COLORS (Color Index, Red, Green, Blue);

end if;-

Red_Image_Array (Row, Col) :- Red:
Grn_Imaqe_.Array (Row, Col) :- Green;
Blu_Image_Array (Row, Col) :w Blue;

end loop;
end loop;

end SET-BACKGROUND;

-- Procedure SETARPOWS --

-- Sets arrows on the image to be displayed.
-- The position of the arrows is determined by
-- the contents of ArrowArray.

-- Inputs: ArrowArray - array that contains arrow records
with information on where to place
the arrows and in which direction.

-- ArrowCount - the number of arrows to be drawn.

3-43

C

-- Red ImagoArray - array that contains the amount of
red pigment for the image on which
the arrows are to be drawn.

-- Grn Image_Array - array that contains the amount of
green pigment for the image on which
the arrows are to be drawn.

-- Blu Imago_Array - array that contains the amount of
blue pigment for the image on which

the arrows are to be drawn.

-- Outputs: Red Image_Array - array that contains the amount of
red pigment for the image which now
has arrows placed on it.

-- GrnImageoArray - array that contains the amount of
green pigment for the image which now
has arrows placed on it.

-- Blu Image_Array - array that contains the amount of
blue pigment for the image which now
has arrows placed on it.

procedure SET-ARROWS (Arrow-Array : in Arrow ArrayType;
Arrow Count : in out integer;
Red_ImageArray : in out DisplayArrayType;
Grn_ImageArray : in out DisplayArray Type:;
oluImageArray in out DisplayArrayType) is

Row, Cal : integer;
Delta Row : integer;
Delta Col : integer;
Col Shift : integer range -1 .1. ;
Row-Shift : integer range -1 .. 1;

begin

Red :=0;
Green :- 0;
Blue := 0;

While ArrowCount > 0

loop

if Arrow-Array (ArrowCount).Direction = Up then

Delta Row :a 0;
Delta Cal :- -3;
Row :Z Arrow Array (Arrow Count).Row Pos + Row Boarder;
Col :- ArrowArray (Arrow Count).Col-Pos + Col-Boarder - 7;

elsif Arrow Array (ArrowCount).Direction - Down then
Delta RoW :u 0;
Delta Cal := 3;
Row :Z Arrow-Array (Arrow Count).Row Pos + Row Boarder;

Cal :- Arrow Array (Arrow Count).Col- os + Col-Boarder + 7;

elsif Arrow Array (Arrow Couit).Directi-on - Left then
Delta Row :- 3;
Delta Cal :u 0;
Row :Z Arrow Array (Arrow Count).Row Pos + Row Boarder + 7;

Cal := Arrow Array (Arrow-Count).Col-Pos + Col-Boarder;

eluif Arrow Array (Arrow Count).Direction - Right then

Delta Row := -3;
* Delta Cal :- 0:

Row :Z ArrowArray (Arrow ount).RowPos + Row-Boarder - 7;

5-44

-

Col :z- ArrowArray (ArrowCount).ColPos + ColBoarder;

Row :- Row - 3;
end if;

0 for Count in I .. 6
loop

for Row Shift in 0 .. 2
loop

for Col_Shift in 0 .. 2
loop

*O Rod_ImageArray (Row + Row-Shift - 1,
Col + Col Shift - 1) :- Red;

Grn ImagoArray (Row + Row-Shift - 1,
Col + Col Shift - 1) : Green;

Blu Image Array (Row + Row-Shift - 1,

ed lCol + ColShift - 1) := Blue:
end loop;~end loop;

if (Count - 1) and (DeltaRow = 0) then

Red ImageArray (Row, Col - 2 Delta Col / 3) Red;

Grn ImageArray (Row, Col - 2 * Delta Col / 3) :- Green;
BluImage Array (Row, Col - 2 * Delta-Col / 3) :- Blue;

Red Image Array (Row - 2, Col) :- Rod;
GrnImage Array (Row - 2, Col) :m Green;
Blu Image Array (Row - 2, Col) :. Blue;

* Red Image Array (Row + 2, Col) :m Red;
Grn Image Array (Row + 2, Col) . Green;
BluImage Array (Row + 2, Col) :. Blue;

Red Image Array (Row + 2, Col + Delta_Col / 3) :- Red;
Grn Image Array (Row + 2, Col + Delta Col / 3) :. Green;
BluImage Array (Row + 2, Col + DeltaCol / 3) :- Blue;

Red Image Array (Row - 2, Col + DltaCol / 3) :-Red;
Grn Image Array (Row - 2, Col + Delta -Col / 3) = Green;
Blu-Image*Array (Row - 2, Col + DeltaCol / 3) := Blue;

Red Image _Array (Row + 3, Col + DeltaCol / 3) := Red;

Grn Image Array (Row + 3, Col + Delta Col / 3) :- Green;
Blu Image Array (Row + 3, Col + DeltaCol / 3)- Blue;

Red Image-Array (Row - 3, Col + DeltaCol / 3) :. Red;

Orn ImageArray (Row - 3, Col + DeltaCol / 3) :- Green;
BluImage Array (Row - 3, Col + DeltaCol / 3) : Blue;

end if;

if (Count - 1) and (Delta Col = 0) then

Red Image-Array (Row - 2 * Delta Row / 3, Col) : Red;
GrnZsage-Array (Row - 2 * Delta-Row / 3, Col) := Green;
Blu ImageArray (Row - 2 * Delta-Row / 3, Col) :- Blue;

Red Imago Array (Row, Col - 2) := Red;
Grn Imago Array (Row, Col - 2) := Green;
Blu-Image-Array (Row, Col - 2) :- Blue;

Red Image Array (Row, Col + 2) :- Red;
Grn Imago Array (Row, Col + 2) :- Green;

Ulu-Image Array (Row, Col + 2) :- Blue;

5-45

Re IgAry(Rw+DlaRw/ ,Cl+2 Rd

Red ImageArray (Row + Delta_Row / 3, Col + 2) G-re;
Gmu ImageArray (Row +. DeltaRow / 3, Col + 2) BluGren;

Rlu ImageArray (Row + Delta_Row / 3, col - 2) RBle:

Rd Image-Array (Row + Delta_Row / 3, Col - 2) G-re;
Blu ImageArray (Row + DeltaRow / 3, Col - 2) BluGren;

Blu Image_-Array (Row + DeltaRow / 3, col + 2) RBle;

redImageArray (Row + DeltaRow / 3, Col + 3) : Gre;

Blu ImageArray (Row + Delta_Row / 3, col + 3) :- Blue;

Red -Image_-Array (Row + Delta_Row / 3, Col - 3) :ft Red;
Gm _Image-Array (Row + Delta_Row / 3. Col - 3) Green;
B luImage Array (Row + Delta_Row / 3, Col - 3) :~Blue;

end if:

Row :=Row + Delta Row;
Col :-Col + DeltaCal;

end loop:

Arrow-Count :- Arrow-Count - 1;

end loop;

end SETARROWS;

-- Procedure SET-SCALES

-- Creates the acales along the left and bottom borders.
-- Each grid on the scales correaponda to four pixel
-- values where a pixel corresponds to a single value
-- in the file being displayed. The grid colors alternate

* -- between two different colors with every eighth grid mark
-- displayed as a third color. The colors that are used
-- are determined by the settings for entries 5, 8, and 999
-- in the color and grayscale lookup tables,

-- Inputs: None

-- outputs; Red Image_,Array - array that contains the
-- amount of red pigment needed

to create the scales.

-- Gm-Image Array - array that contains the
amount of green pigment needed
to create the scales.

-- lu Image_,Array - array that contains the
amount of blue pigment needed

* -- to create the scales.

procedure SETSCALES (Red -Image_-Array :in out Display_Array_-Type;
- Gm Imoage Array in out Display_ArrayType;

elu Image Array ;in out DisplayArray Type) is

Row_1, Row 2,
* Col 1, Col-2 :integer;

B- 46

'.'

'V begin

for Row-Index in 0 (Max-Row / 8) - 1

0

V.. loop
for Col in (ColBoarder - 9) .. (ColBoarder - 4)

loop
for RowIncrement in (Row-Boarder 1) .. (RowBoarder + 4)
loop

Row 1 := (8 * Row Index) + Row Increment;
Row-2 :- Row 1 + 4:

Color Index :- 5;

if Color Flag - false then
* SET GREYSCALE (Color-Index, Red, Green, Blue):

else
SET COLORS (ColorIndex, Red, Green, Blue);

end if;

Red_Image_Array (Row_1, Col) :m Red;

Grn Image_Array (Row 1, Col) :f Green;
BluImage_Array (Row_1, Col) :- Blue;

if (RowIndex + 1) rem 4 /- 0 then
Color Index :- 8;

if Color Flag - false then
SET GREYSCALE (Color_Index, Red, Green, Blue);

else
SET COLORS (ColorIndex, Red, Green, Blue):

end if:

RedImageArray (Row_2, Col) :- Red:
Grn _Image_Array (Row2, Col) := Green:

Blu_Image_Array (Row_2, Col) :. Blue:
else

ColorIndex :- 999;

if Color Flag = false then
* SETGREYSCALE (Color Index, Red, Green, Blue);

else
SET COLORS (ColorIndex, Red, Green, Blue):

end if:

Red_Image_Array (Row?2, Col) := Red;
SGrn _Image_Array (Row_2, Col) :- Green:

BluImage_Array (Row-2, Col) - Blue:
end if:

*' end loop:
end loop:

end loop;

for Col Index in 0 .. (Max Col / 8) - 1
loop

for Row in (RowBoarder - 9) .. (Row Boarder - 4)

loop
for Col_Increment in (Col_Boarder + 1) (Col_Boarder + 4)
loop

Col 1 :- (S * Col Index) + Col Increment:
Col2 :- Col_1 + 4;

Color Index :- 5;

-4

if ColorFlag - false then
* SETGREYSCA.LE (Colorindex, Red, Green, Blue);

SETCOLORS (Color_Index, Red, Green, Blue):
end if.

* Red ImageArray (Row, Col 1) :Rod;
Grn_Image Array (Row, Coll1) :.Green;

*Blu Image__Array (Row, Coll1) :-Blue;

ftif (ColIndex + 1) rem 4 /- 0 then
Color-Index :- 8:

if ColorFlag - false then
N SETGREYSCALE (ColorIndex, Red, Green, Blue);

oleo
4 SETCOLORS (ColorIndex, Red, Green, Blue);

nd if;

RedImageArray (Row, Col 2) :-Red;
GrnImageArray (Row, Col_2) :-Green;
Alu Imago-Array (Row, Col_2) :-Blue;

also
Color _Index :- 999;

if Color Flag - false then
U'...SET GWEYSCALE (Color Index, Red, Green, Blue),

else
SETCOLORS (ColorIndex, Red, Green, Blue):

end if;

RedImageArray (Row, Col_2) :=Red;
Gn _ImageArray (Row, Col_2) :=Green;
BluImageArray (Row, Col_2) :-Blue;

end if,-
* end loop;

end loop;
end loop;

end SET-SCALES;

-- -- -- -- --- -- -- --- -- -- -
-- Procedure SETSPECTRUM

-- Creates the spectrum chart for the bottom of the display.
-- The 16 colors or greyscales are displayed in ascending
-- order along the bottom border.

-- Inputs: None

-- outputs: Red Image A rray -array that contains the
amount of red pigment needed
to create the acectrum.

-- Gr Image rry-array that contains the
_Array amount of green pigment needed

p. to create the spectrum.

-- BluImage_Array -array that contains the
-- amount of blue pigment needed

to create the spectrum.

B-48a

procedure SETSPECTRUM (Red -Image-Array :in out DisplayArray-Type;
Grn Image-Array :in out Display Array_Type;

* BluImageArray :in out Display ArrayType) is

Count :integer;
Spectrum-Size :integer;

begin

Spectrum_-Siaes: Truncate (float (MaxRow) /float (16));

ColorIndex :- 0;
Count :- 0;
for Row in Row Boarder + 1 .. Spectrum Size 16 + Row Boarder
loop

Count :- Count +. 1;
for Col in 1 .. 15
loop

* if Color flag - false then
SET -GWEYSCALE (Color-index, Red, Green, Blue);

else
SET COLORS (ColorIndex, Red, Green, Blue);

end if;I

RedImag_,Array (Row, Col) :-Red;
GrnImage_Array (Row, Col) :=Green:
Blu_Image_,Array (Row, Col) :-Blue;

end loop;
if Count - Spectrum Size then

Color -index :- CoElor Index + 1;
Count :- 0;

end if:
end loop;

* end SETSPECTRUM;

-- Procedure SET IMAGE

-- Sets the Image into the three color display arrays.

-- Inputs: Image Array - contains the data of the

Red_ file to be displayed.

-- amount of red pigment needed
to create the image.

-- Grn ImegeArray -array that contains the
amount of green pigment needed

to create the image.

-- BluImage-Array - array that contains the
amount of blue pigment needed
to create the image.

procedure SIT IMAGE (ImageArray in Image Array_Type:
BedImageArray :in out DTsplay_,Array Type;
Grn ImageArray :in out Display_,ArrayType;

*BluImage_Array in out Display_Ahrray_Type) is

8-49

- -~~~~ T--- - .

begin

if Max-Rowi a Max-Coll than
for Row in reverse 0 .. Max-RowI
loop

* for Col in 0 .. MaxCoill
loop

Color-Index :- abs (integer (Image_Array (MaxCoil - Col,

MOx-fowl - Row).RealH);
if Color Flag - false then

SET_-GREYSCALE (ColorIndex, Red, Green, Blue);
also

SET_-COLORS (Color-Index, Rod, Green, Blue):

4P end if;

Red ImageArray (Max Row 3rd - Row, Col + Col Boarder + 1)
:-Red;

GrnImageArray (MaxRow Brd - Row, Col + Col Boarder + 1)
:- Green;

Blu ImageArray (MaxRow_3rd - Row, Col + Col Boarder + 1)
:-Blue;

* end loop;
end loop;

else
for Row in 0 . . Max-Rowl
loop

for Col in 0 .. Max-Coll
loop

Color_-Index :. abs (integer (ImageArray (Row, Col).RealH);

C if Color Flag - false then
SET_-GREYSCALE (ColorIndex, Red, Green, Blue):

else
SETCOLORS (Color Index, Red, Green, Blue);

end if,-

RedImageArray (Row + Row_Boarder + 1, Col + Col_Boarder + 1)
- Red;

Grm ImageArray (Row + RowBoarder + 1, Col + Col Boarder + 1)
:- Green;

Blu ImageArray (Row + Row-Boarder + 1, Col + ColBoarder + 1)
:-Blue;

end loop;
end loop;

end if;

* end SETIMAGE;

-- CompactData -

-This procedure put the image into a run length encoded format
-that allows the Evans and Sutherland to display much faster

procedure Compact_Data (Ifum-of Cola in out integer;
Num of Rows in out integer;
X-Count : out integer;
Red :in DisplayArray_Type;
Blue in DisplayArray_Type:
Green in DisplayArray -Type;
PS ArrayColor :out PS ArrayType) is

x integer :-red'first(l);
y integer :-red'first(2):

3-50

.e P P 01

next x integer -red'first(l) + 1;
next-y :integer -redfirst(2);
count :integer :-1;

kc integer :.1;
* funpixels constant integer :- ((red' last (1 -red' first (1)) +1

*(red' last(2 (-red'f irst)2)(+1);

begin -- Compact-Data

For n in -. nun pixels-i loop
If tred(x,y)-red(next x,next y)) and

(b lue(x y)-blu*(ne x tx,next_y)) and
(green(x,y)-green(noxt x,nexty)) then

count :- count + 1;

elso

PSArray_Color(k,l(: count;
PSArray_Color(k,2) :-red(x,y);

PS Array_Color(k,3) :=green(x,y);

* PSArrayColor(k,4) :-blu*(x,y(;

kc :- k+l;
count :- 1;

end if;

X :- x + 1;
next-x :- next-x + 1;

* If x >red'last(l) then
y :-y+l;

x =red'first(l);

next x :-x+l;
next-y y;

elsif x . red last~l) then
next x :=red'first(l);
next-y y+l;

* end if;
end loop;

PSArray_Color(k,l) :=count;

6SAryClrk2 ~~~)
PSArray_Color(k,3) :-re(x,y);
PSArray_Color(k,4) : gre(x,y);

KCount :- kc;

end CompactData;

-- Main procedure for PROCESS_FILE

begin -- PROCESS_FILE

new line;

Options:
loop

new line;
put_line (~G ->Greyscale")I;

new-line;
put line P -- Psuedocolor");
new line;
put C. Select display option

* get (Answer);
skip_line;

case Answer is
when 'G' 1 'g' ->

Color Flag :- False:
exit Options;

* when 'P' I 'p' -)
Color_Flag :- True;
exit Options;

when others ->
new line (3);
put line ("Incorrect response! Try again.");
new line;

end case;
a nd loo0p Op tions;

Video:
A- loop

new line (3);
put line ("N - Normal Video");
new line;
put line V R -- Reverse Video");

*new line;
put line E - Enhanced Video");
new line;
put line ("0 ->original Video");
new line;
put (" Select video output .)

get (Answer);
skip_line;

case Answer is
when IN' I In, "

V ideo Flag :-Normal;
exit Video;

when 'RI 'r' -

Video Flag :-Reversed;

exit Video;
when 'E' I'a'

Video Flag :-Enhanced;

new-l-ine (3);
put (" got Threshold -)

get (Threshold);
skip line;
new line;
exitF Video;

when ' 0' 1 'o' .>
VideoFlag :-Original;
exit Video;

when others =

new line (3);
put ("You did not repond with a correct entry.");
put line (" Try again.");
new line;

end case;
end loop Video;

Arrows:
loop

A new lino(3);
.Nput line ("A -- > Add Arrows to Dislay");

now line;
put line C" -- > No Arrows");
n*w line;
put I" Select Arrow option a>)
get (Answer);
skip_line;

case Answer is
when 'A' I 'a,I. Arrow Flag :-true;

new- lln(3);
put (" Enter the number of arrows to be drawn (1 -5) -

got (Arrow_Count);

if (ArrowCount 1) or (ArrowCount 5) then
new-lino(3);
put (" -- Bad Input
Wait;
Arrow Flag :- false;

S exit Arrows:
end if;

for Count in 1 Arrow-Count
loop

s1kip Line; new line(3);
Put V-Arrow *)- put(Count,3); new line(2);
put V" Row position it should poInt to ->
get (Arrow Array(Count).RowPos):
new-lino(2T; skip line:
put (" Col position it should point to=
get (ArrowArray(Count).Col Pos);
new line(2); skip line;
put (" U -> Up D -> Down L -> Loft R - Right");
new-line(2);

put (" Direction it should point >)

get (Answer);

case Answer is
6when I' 'u' Arrow Array(Count).Diroction *Up:

when 'D' 'd, ArrowArray(Count).Direction ;=Down;

when ILI 'I1,- Arrow -Array(Count).Direction :-Left;
when 'N' I'r' Arrow Array(Count).Direction :-Right;
when others ->ArrowFlag :- false;

end case;
end loop;

skip-line;
exit Arrows;

when '' I'b' -)
ArrowFlag :- false;
exit Arrows;

when o thers -)
new line (3);I'put_line ("incorrect reoponsel Try again."):
new_line;I

e nd ease;
end loop Arrows;

new line (4);
put (DISPLAYING ")

put (In File Name (1 . . Last));
0 ~put _line " 7");

new-line (2):
READ FILE fInFile Name, Lest, Image_Array);
new-line;

case Video Flag is
when normal .>

FIND INTENSITY (Image_.Array);
when Reversed.

FIND REVERSE_INTENSITY (Image_Array);
when 9nhanced *)

ENXAHCE VIDEO (Image Array, Threshold);

3-53

6VNAM

FIND INTENSITY (Image-Array);
when Or~ginal *

-This option allows the display of an uprocessed video
* -- file that is already represented in intensity levels

-- between 0 and 15.

for Row in ImageArray'range~l)
loop

for Col in Image _Array'range)2)
loop

if Max -Value 10ImageArray (Row, Col).Real then
Max_-value :=ImageArray (Row, Col).Real;

and if;
end loop;

end loop;

if Max Value 15.0 or MaxValue (0.0 then
raise Intensity-Error;

end if;

when others
new line (3);
put ("You did not repond with a correct entry.");
put line (" Try again.");
new-line;

end cae

SETBACI:GROUND (Red_Image_Array, Orn _Image-Array, B1u_ImageArray);
SET-SCALES (Red Image Array. GrnImageArray, 8lu_ImageArray);
SET-SPECTRUM (RedImage Array, GrnImage Array, BluImageArray);

* SETIMAGE (Image_Array, RedImageArray. Grn_Image Array.-
B1u Image_Array);

if Arrow flag w True then
SET AiROWS (Arrow-Array, ArrowCount, Red ImageArray,

Grn Image Array, SluImage Array);
end if;

CompactData (Max Col 3rd, MaxRowOrd. K Count, RedImage Array,
Bl3u Imagqe Array, Gm _Image A rray, PS ArrayColor);

PS_RASTERCOLORi TMaxCol_39rd. Max Row 3rd, K Counti, Pa ArrayColor);

except ion

when IntensityError

Ile new line (O);
put line (*Your data values exceed the maximum allowable intensity*);
put line (*levels. Your file must be normalized with respect to");
put-_line V*acceptable (0 - 15) intensity levels.");

end PROCESS-FILE;

begin -- DISPLAY

now line (24);
put line "FPile To Be Displayed On The Evans ISoutherland:

new line;p. GET PILE (In rile-Name, Last, Max Row, Max-Col);

if East -e nd (InPileName (1) -'Q' or

3-54

In File Name (1) - 'q') then
new-line (3);
putline L Leaving Display -- Good Bye 1

else

PROCESS FILE (Max Row, Max Col);

end if;

exception

when File Error ->

new line (12);

put line (" Your file size was not [256 x 2561 or (512 x 128).");

tip new line (12);

when Name Error *

new line (12);

put line " *.* File not in Directory .*" ;

new line (12);

end DISPLAY;

Io

package FORTRAN HANDLER is

-- This package serves as the ads-fortran interface for the

~- Evans and Sutherland PS340 raster display fortran
- procedures used to display image arrays.

rtype Pa_ArrayType is array (integer range <,

integer range (>) of integer;

type DisplayArray_Type is array (integer range (>,

integer range <>) of integer;

procedure PS_RASTER_COLORI (Rows in integer;
Cola in integer;

K Count in integer;
-PsArray in out PsArrayType);

pragma interface (fortran, PS RASTER COLORi);

pragma importprocedure (PSRASTERCOLORi, mechanism - reference);

end FOPTRANHANDLER;

3-5

° C

* Ctt .t . t t ** t t tt* * ~C

subroutine PS_RasterColorl(Num ofRowsNum ofColsK_countOut_Pictr)

implicit integer*4 (XY)
integer*4 Back Gnd(3).ColorTbl(4,256),

+ OutPictr(4,k_count)

c
c (1) Position the input image on the center of the screen

C

Xmin- (640 - Num ofCols)/2
* Xeax- XMin + Nun ofCole - 1

Ymin- (480 - Mum of_Rows)/2
Ymax= Ymin + MumofRows - 1

c

c

c 12) Set up the RS-232 link
*c

call Pattch(logdevnam.IPS340/phydevtypETHERNET ,ERRHND)

c

c

c [31 Set up the WRLUT (write color look-up table)
c

c [3.&1 Set up look up table range

Intns min 0
Intns max- 255
call PRASLR(Intns min,Intns_max,ERRHD)

c

c (3.b] Sot up the default if user does not want to set up his own table

c

Level Val--1
Level Inc-1024/2

56

Num o-f Levels=256
do 100 3.lNum of Levels1

Level Val-Level Val+LevelInc
Color Tbl(1 ,J)-

Color Tbl(2,j)nLevel Val I Red Color Table

Color Tbl(3,3)Level- Val I Green Color Table
ColorTbl(4,3)uLevelVal I Blue Color Table

100 continue

Index-O
call PRASLU(Nuu of- LvelsIndexColor TblIERRID)

c

c

c [41 set background color to light-blue
c

Back Gnd(l)}0
Back Gnd(2)-255
eBack Gnd(3)-255

call-PRASER(Back Gnd ERRMND)
c

c
c [5) set the lower-left corner of the image
c

call PtASLD(XKin,Ysin,Xmax,Ymax,ERRHND)
c
c
c 161 display the image
c

call PRASVP(k_count,Out PictrRRJND)

c

3-57'C.

C

c [III disconnect and return to host

C

callPEYTACH(IRRND)
return
end

(p

V"W -V V W- ;

Bibliography
(11 Kobel, Capt William G. and Capt Timothy Martin. Distortion Invariant Pattern

Recognition in Non-Random Noise. MS thesis, AFIT/GE/ENG/86D-20. School of
* Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,

December 1986 (AD- A177598).
12] Casasent, David and others. "Real-Time Deformation Invariant Optical Pattern

Recognition Using Coordinate Transformation," Applied Optics, 26: 938-942
(March 1987).

[3] Casasent, David and Demetri Psaltis. "Position, Rotation, and Scale Invaria.it Opt-
ical Correlation," Applied Optics 15 (7): 1795-1799 (July 1976).

[4] Horev, Moshe. Picture Correlation Model for Automatic Machine Recognition.
MS thesis, GE/EE/80D-25. School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, December 1980 (AD-A100-765).

[5] Hsu, Yuan-Neng. et al. "Rotation-Invariant Digital Pattern Recognition using Cir-
cular Harmonic Expansion," Applied Optics, 21 (22): 4012-4015 (November
1982).

[6] Messner, Richard A. and Harold H. Szu. "An Image Processing Architecture for
Real Time Generation of Scale and Rotation Invariant Patterns," Computer Vision,
Graghics, and Image Processing, 31 (1): 50-66 (July 1985).

[7] Nitzan, David and Richard 0. Duda. "The Measurement and Use of Registered
Reflectance and Range Data in Scene Analysis," Proceedings of the IEEE 65:

206-220 (Febuary 1977).
[81 Grantham, 2Lt Jeffrey W. Object Recognition Using Range Images. MS thesis,

AFIT/GEP/ENP/85D-4. School of Engineering, Air Force Institute of Technology
(AU), Wright- Patterson AFB OH, December 1985 (AD-A167148).

[9] Tong, 2Lt Carl W. Target Segmentation and Image Enhancement Through Mul-
tisensor Data Fusion. MS thesis, AFIT/GE/ENG/86D- 55. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1986 (AD-A178875).

[10] Duda, Richard 0. and David Nitzan. "Low-Level Processing of Registered Inten-
sity and Range Data," Proceedings of the Third International Conference on Pat-
tern Recognition,: 598-601 (November 1976).

[11] Duda, Richard 0., David Nitzan and Phyllis Barrett. "Use of Range and
Reflectance Data to Find Planer Surface Regions," IEEE Transactions on Pattern
Recognition and Machine Intellegence, PAMI-1:259-271 (July 1979).

[12] Rogers, Dr. Steven K., Assistant Professor. Personal interviews. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
1987.

[13] Ruck, Capt Dennis W. Multisensor Target Detection and Classification. MS
thesis, AFIT/GE/ENG/87D-56. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1987.

[14] Gonzalez, Rafael C. and Paul Wintz. Digital Image Processing. London, Amster-
dam, Don Mills, Ontario, Sydney, and Tokoyo: Addison-Wesley Publishing Com-
pany, 1977.

115] Tong, 2Lt Carl W. and others. "Multisensor Data Fusion of Laser Radar and For-
ward Looking Infrared (FLIR) for Target Segmentation and Enhancement,"
Proceedings of the SPIE 782:10-18 (April 1987).

t

~BI- 1

[161 Mayo, 2Lt Mike W. Computer Generated Hologram and Magneto-Optic Spatial
% Light Modulator for Optical Pattern Recognition. MS thesis, AFIT/GEO/87D- i.

School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
* AFB OH, December 1987.

[17] Oppenheim A.V. and J.S. Lim. 'The Importance of Phase to Signal," Proceeding.
of the IEEE 69:529-541 (May 1981).

[18] Tallman, Lt Col Oliver Howard II. The Classification of Visual Images by Spatial
Filtering. PhD Dissertation, AFIT/DS/EE/67- 1. School of Engineering, Air Force

to Institute of Technology (AU), Wright-Patterson AFB OH, June 1969 (AD 858866)
[19] Kabrisky, Dr. Matthew, Professor. Lecture notes taken in EENG 620, Pattern

Recognition I. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, 1986.

[20] Goodman, J.W. Introduction to Fourier Optics. New York: McGraw-Hill Book
Company, 1968.

[21] Vanderburg, Gordon J. and Azriel Rosenfeld. "Two-Stage Template Matching,"
IEEE Transactions on Computers, 26:384-393 (April 1977).

[22] Lippmann, Richard P. "An Introduction to Computing with Neural Networks,"
IEEE ASSP Magazine, 4:4-22 (April 1987).

[231 Ruck, Capt Dennis W., Masters Student. Personal interviews. School of Engineer-
4 ing, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 1987.

G '-

'p

--

-. * U I

.

VITA

First Lieutenant Steven E. Troxel was born on 2 August 1959 in Minot, North

Dakota. He graduated from high school in Cheyenne, Wyoming in 1977 and attended

the University of Wyoming. He enlisted in the United States Air Force in December

*1979 and was assigned to the 570th Strategic Missile Squadron, Davis Monthon AFB,

Tucson Arizona as a Missile Combat Crew Member. He was accepted into the Airman

Education and Commissioning Program in August 1981 and attended the University of

* Arizona from which he received the degree of Bachelor of Science in Electrical

Engineering in December 1983. Upon graduation, he attended Officer Training School

and was commissioned a Second Lieutenant in the United States Air Force in March

1984. After commissioning, he was stationed at F.E.Warren Air Force Base, Wyoming

as a Minuteman and Peacekeeper Electrical Engineer with the Technical Engineering

Branch of the 90th Strategic Missile Wing. He entered the masters program in the

• School of Engineering, Air Force Institute of Technology, in June 1986.

Permanent address: 501 North Main

Berthold, North Dakota

4'

VI- I

UNCI.A "TFIFI'
SEC.,RITY CLASSFICA'hON OF THIS -"AGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

'a REPORT SECURITY CLASSIFCATfON lb RESTRICTIVE MARKINGS

UNCLASSIFIED

2a SEC',RITY CLASSIFiCATiON AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

-b D S Oproved for public release;
2b DECLASSIFiCATiON. -DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NLMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GEO/ENG/87D-3

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIPCode)
Air Force Institute of Technology

Wright-Patterson AFB, Ohio 45433-6583

Ba. NAME OF FUNDING, SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

"c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO ACCESSION NO.

1 1 TITLE (Include Security Classification)

POSITION, SCALE, AND ROTATION INVARIANT TARGET RECOGNITION
USING RANGE IMAGERY

12 PERSONAL AUTHOR(S)

Steven E. Troxel, B.S.E.E., First Lieutenant USAF
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

MS Thesis FROM TO 1987 December 137

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Target Recognition, Pattern Recognition, Correlation,

17 11 Image Processing, Learning Machines

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: POSITION, SCALE,AND ROTATION INVARIANT TARGET RECOGNITION
USING RANGE IMAGERY

PToved P p e e: IAW A 10-
Thesis Chairman: Dr. Steven K. Rogers, Captain, USAF YA F

Sr. I F . . - I D(Ii - 'u t

An t r 6 - ,4

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

CIUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a NAME O RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Dr. Steven K. Rogers, Captain, USAF 513-255-6027 AFTTIENG

DO Form 1473, JUN 86 Previous editions are obsolete. I 1 SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

U R Jil

-.q.. UNCLASSIFIED
Security Classification of This Page

This thesis explores a new approach to the recognition of tactical targets using a

multifunction laser radar sensor. Targets of interest were tanks, jeeps, and trucks.

Doppler images wk-ere segmented and overlaided onto a relative range image. The resul-

tant shapes were then transformed into a position, scale, and rotation invariant (PSRI)

feature space. The classifiation process used the correlation peak of the template PSRI

space and the target PSRI space as features. Two classification methods were imple-

mented: a classical distance measurement approach and a new biologically-based neural

net.,ork multilaver perceptron architecture.

Both methods demonstrated classification rates near 100% with a true rotation

invariance demonstrated up to 20 degrees. Neural networks were shown to have a dis-

tinct advantage in a robust environment and when a figure of merit criteria was applied.

A space domain correlation was developed using local normalization and multistage

processing to locate and classify targets in high clutter and with partially occluded tar-

gets.

0'-

-,.,

'p..

"t" ,

J.

4

p.

-v

v.a
4."

aJ..

-S. /A2D
.1
"p

"p

.1
S.-

4..

S.

"p.
'"p 1
0

S.
5%

I~j~

.- 0 S 0 0 ~ 0 0 0 S U .~V 0. .gz4y~.~*

